scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Diverse facets of COMT: from a plausible predictive marker to a potential drug target for schizophrenia.

TL;DR: The rapidly evolving literature exploring the diverse facets of COMT biology, its functional relevance as a predictive marker and a therapeutic target for schizophrenia are summarized.
Abstract: Dopaminergic system in the prefrontal cortex (PFC) is known to regulate the cognitive functions. Catechol-O-methyl transferase (COMT), one of the major modulators of prefrontal dopamine function, has emerged as an important determinant of schizophrenia associated cognitive dysfunction and response to antipsychotics. A common Val->Met polymorphism (rs4680) in the COMT gene, associated with increased prefrontal dopamine catabolism, impairs prefrontal cognition and might increase risk for schizophrenia. Further, the degree of cognitive improvement observed with antipsychotics in schizophrenia patients is influenced by the COMT activity, and Val/Met has been proposed as a potential pharmacogenetic marker. However, studies evaluating the role of COMT have been equivocal. The presence of other functional polymorphisms in the gene, and the observed ethnic variations in the linkage disequilibrium structure at COMT locus, suggest that COMT activity regulation might be complex. Despite these lacunae in our current understanding, the influence of COMT on PFC mediated cognitive tasks is undeniable. COMT thus represents an attractive candidate for novel therapeutic interventions for cognitive dysfunction. The COMT activity inhibiting drugs including tolcapone and entacapone, have shown promising potential as they selectively modulate dopaminergic transmission. This review is an attempt to summarize the rapidly evolving literature exploring the diverse facets of COMT biology, its functional relevance as a predictive marker and a therapeutic target for schizophrenia.
Citations
More filters
Journal Article

[...]

TL;DR: This review was intended to compile the normative frequency distribution of the variants of genes encoding DMEs and transporter proteins (CYP450s, TPMT, GSTs, COMT, SULT1A1, NAT2 and UGTs) with Indian perspective.
Abstract: Phase I and II drug metabolizing enzymes (DME) and drug transporters are involved in the absorption, distribution, metabolism as well as elimination of many therapeutic agents, toxins and various pollutants. Presence of genetic polymorphisms in genes encoding these proteins has been associated with marked inter-individual variability in their activity that could result in variation in drug response, toxicity as well as in disease predisposition. The emergent field pharmacogenetics and pharmacogenomics (PGx) is a promising discipline, as it predicts disease risk, selection of proper medication with regard to response and toxicity, and appropriate drug dosage guidance based on an individual's genetic make-up. Consequently, genetic variations are essential to understand the ethnic differences in disease occurrence, development, prognosis, therapeutic response and toxicity. For that reason, it is necessary to establish the normative frequency of these genes in a particular population before unraveling the genotype-phenotype associations. Although a fair amount of allele frequency data are available in Indian populations, the existing pharmacogenetic data have not been compiled into a database. This review was intended to compile the normative frequency distribution of the variants of genes encoding DMEs (CYP450s, TPMT, GSTs, COMT, SULT1A1, NAT2 and UGTs) and transporter proteins (MDR1, OCT1 and SLCO1B1) with Indian perspective.

51 citations

Journal ArticleDOI

[...]

TL;DR: Overall, this review provides evidence of good translation from the animal models into the clinic when sexual dimorphism is assessed, and highlights a male working memory advantage and a female advantage for visual memory and social cognition in rodent models for schizophrenia.
Abstract: Sex is often overlooked in animal and human research. Cognitive impairment associated with schizophrenia (CIAS) remains an unmet clinical need, as current antipsychotic medication does not provide clinically meaningful improvements. One explanation could be lack of appreciation of gender differences in CIAS. Animal models play a critical role in drug development and improved translation to the clinic is an on-going process. Our systematic review aims to evaluate how well the animal studies translate into clinical findings. Supporting clinical results, our review highlights a male working memory advantage and a female advantage for visual memory and social cognition in rodent models for schizophrenia. Not investigated in animals, a female advantage for attention and speed of processing has been found in schizophrenia patients. Sex differences in reasoning and problem solving are poorly investigated in both human and animal studies. Overall, our review provides evidence of good translation from the animal models into the clinic when sexual dimorphism is assessed. Enhanced understanding of these sex differences will improve the management of CIAS.

42 citations

Journal ArticleDOI

[...]

TL;DR: The findings suggest that the COMT Val158Met polymorphism is associated with response to antipsychotics in schizophrenia and schizo-affective disorder patients, and this effect may be more pronounced for atypical antippsychotics.
Abstract: Background: The catechol-O-methyltransferase (COMT) enzyme plays a crucial role in dopamine degradation, and the COMT Val158Met polymorphism (rs4680) is associated with significant differences in enzymatic activity and consequently dopamine concentrations in the prefrontal cortex. Multiple studies have analyzed the COMT Val158Met variant in relation to antipsychotic response. Here, we conducted a meta-analysis examining the relationship between COMT Val158Met and antipsychotic response. Methods: Searches using PubMed, Web of Science, and PsycInfo databases (03/01/2015) yielded 23 studies investigating COMT Val158Met variation and antipsychotic response in schizophrenia and schizo-affective disorder. Responders/nonresponders were defined using each study’s original criteria. If no binary response definition was used, authors were asked to define response according to at least 30% Positive and Negative Syndrome Scale score reduction (or equivalent in other scales). Analysis was conducted under a fixed-effects model. Results: Ten studies met inclusion criteria for the meta-analysis. Five additional antipsychotic-treated samples were analyzed for Val158Met and response and included in the meta-analysis (ntotal=1416). Met/Met individuals were significantly more likely to respond than Val-carriers ( P =.039, ORMet/Met=1.37, 95% CI: 1.02–1.85). Met/Met patients also experienced significantly greater improvement in positive symptoms relative to Val-carriers ( P =.030, SMD=0.24, 95% CI: 0.024–0.46). Posthoc analyses on patients treated with atypical antipsychotics (n=1207) showed that Met/Met patients were significantly more likely to respond relative to Val-carriers ( P= .0098, ORMet/Met=1.54, 95% CI: 1.11–2.14), while no difference was observed for typical-antipsychotic-treated patients (n=155) ( P= .65). Conclusions: Our findings suggest that the COMT Val158Met polymorphism is associated with response to antipsychotics in schizophrenia and schizo-affective disorder patients. This effect may be more pronounced for atypical antipsychotics.

39 citations

Journal ArticleDOI

[...]

TL;DR: Targeting glutamatergic transmission remains one of the most promising strategies in schizophrenia, particularly early in the course of illness, but therapeutic approaches may require greater specificity for receptor subtype type, illness phase, and individual biology in order to enhance efficacy and overcome problems with reproducibility of clinical results.
Abstract: PURPOSE OF REVIEW The ketamine model has dominated drug discovery in schizophrenia over the past decade, supported by genetic and postmortem evidence implicating glutamatergic transmission. This review assesses recent successes and disappointments of glutamatergic agents and identifies promising new directions. RECENT FINDINGS Strategies focused on enhancing activity of the N-methyl D-aspartate (NMDA) receptor via direct agonists at the glycine site or by inhibition of glycine reuptake have produced modest and often inconsistent evidence of efficacy, as have approaches to reduce excessive glutamate release by lamotrigine or by mGluR2/3 agonists. Strategies targeting α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors have also met with only limited success. Newer approaches include selective allosteric modulation of NMDA receptor subunits and of mGluR5 receptors. In addition, intracellular pathways downstream of NMDA receptors may also provide new treatment targets, as exemplified by phosphodiesterase (PDE) inhibitors. SUMMARY Targeting glutamatergic transmission remains one of the most promising strategies in schizophrenia, particularly early in the course of illness, but therapeutic approaches may require greater specificity for receptor subtype type, illness phase, and individual biology in order to enhance efficacy and overcome problems with reproducibility of clinical results.

36 citations

Journal ArticleDOI

[...]

TL;DR: Crystal structures of mouse, rat and human catechol-O-methyltransferase were determined in apo, semi-holo, holo and Michaelis forms under a variety of conditions, testifying to why this enzyme is a difficult drug target.
Abstract: Methylation catalysed by catechol-O-methyltransferase (COMT) is the main pathway of catechol neurotransmitter deactivation in the prefrontal cortex. Low levels of this class of neurotransmitters are held to be causative of diseases such as schizophrenia, depression and Parkinson's disease. Inhibition of COMT may increase neurotransmitter levels, thus offering a route for treatment. Structure-based drug design hitherto seems to be based on the closed enzyme conformation. Here, a set of apo, semi-holo, holo and Michaelis form crystal structures are described that define the conformational space available to COMT and that include likely intermediates along the catalytic pathway. Domain swaps and sizeable loop movements around the active site testify to the flexibility of this enzyme, rendering COMT a difficult drug target. The low affinity of the co-substrate S-adenosylmethionine and the large conformational changes involved during catalysis highlight significant energetic investment to achieve the closed conformation. Since each conformation of COMT is a bona fide target for inhibitors, other states than the closed conformation may be promising to address. Crystallographic data for an alternative avenue of COMT inhibition, i.e. locking of the apo state by an inhibitor, are presented. The set of COMT structures may prove to be useful for the development of novel classes of inhibitors.

26 citations


Cites background from "Diverse facets of COMT: from a plau..."

  • [...]

References
More filters
Journal ArticleDOI

[...]

TL;DR: The data suggest that the COMT Val allele, because it increases prefrontal dopamine catabolism, impairs prefrontal cognition and physiology, and by this mechanism slightly increases risk for schizophrenia.
Abstract: Abnormalities of prefrontal cortical function are prominent features of schizophrenia and have been associated with genetic risk, suggesting that susceptibility genes for schizophrenia may impact on the molecular mechanisms of prefrontal function. A potential susceptibility mechanism involves regulation of prefrontal dopamine, which modulates the response of prefrontal neurons during working memory. We examined the relationship of a common functional polymorphism (Val(108/158) Met) in the catechol-O-methyltransferase (COMT) gene, which accounts for a 4-fold variation in enzyme activity and dopamine catabolism, with both prefrontally mediated cognition and prefrontal cortical physiology. In 175 patients with schizophrenia, 219 unaffected siblings, and 55 controls, COMT genotype was related in allele dosage fashion to performance on the Wisconsin Card Sorting Test of executive cognition and explained 4% of variance (P = 0.001) in frequency of perseverative errors. Consistent with other evidence that dopamine enhances prefrontal neuronal function, the load of the low-activity Met allele predicted enhanced cognitive performance. We then examined the effect of COMT genotype on prefrontal physiology during a working memory task in three separate subgroups (n = 11-16) assayed with functional MRI. Met allele load consistently predicted a more efficient physiological response in prefrontal cortex. Finally, in a family-based association analysis of 104 trios, we found a significant increase in transmission of the Val allele to the schizophrenic offspring. These data suggest that the COMT Val allele, because it increases prefrontal dopamine catabolism, impairs prefrontal cognition and physiology, and by this mechanism slightly increases risk for schizophrenia.

2,347 citations


"Diverse facets of COMT: from a plau..." refers background in this paper

  • [...]

  • [...]

  • [...]

  • [...]

Journal ArticleDOI

[...]

TL;DR: Val is a predominant factor that determines higher COMT activity in the prefrontal cortex, which presumably leads to lower synaptic dopamine levels and relatively deleterious prefrontal function.
Abstract: Catechol-O-methyltransferase (COMT) is a key enzyme in the elimination of dopamine in the prefrontal cortex of the human brain. Genetic variation in the COMT gene (MIM 116790) has been associated with altered prefrontal cortex function and higher risk for schizophrenia, but the specific alleles and their functional implications have been controversial. We analyzed the effects of several single-nucleotide polymorphisms (SNPs) within COMT on mRNA expression levels (using reverse-transcriptase polymerase chain reaction analysis), protein levels (using Western blot analysis), and enzyme activity (using catechol methylation) in a large sample (n = 108) of postmortem human prefrontal cortex tissue, which predominantly expresses the -membrane-bound isoform. A common coding SNP, Val158Met (rs4680), significantly affected protein abundance and enzyme activity but not mRNA expression levels, suggesting that differences in protein integrity account for the difference in enzyme activity between alleles. A SNP in intron 1 (rs737865) and a SNP in the 3′ flanking region (rs165599)—both of which have been reported to contribute to allelic expression differences and to be associated with schizophrenia as part of a haplotype with Val—had no effect on mRNA expression levels, protein immunoreactivity, or enzyme activity. In lymphocytes from 47 subjects, we confirmed a similar effect on enzyme activity in samples with the Val/Met genotype but no effect in samples with the intron 1 or 3′ SNPs. Separate analyses revealed that the subject's sex, as well as the presence of a SNP in the P2 promoter region (rs2097603), had small effects on COMT enzyme activity. Using site-directed mutagenesis of mouse COMT cDNA, followed by in vitro translation, we found that the conversion of Leu at the homologous position into Met or Val progressively and significantly diminished enzyme activity. Thus, although we cannot exclude a more complex genetic basis for functional effects of COMT, Val is a predominant factor that determines higher COMT activity in the prefrontal cortex, which presumably leads to lower synaptic dopamine levels and relatively deleterious prefrontal function.

1,504 citations


"Diverse facets of COMT: from a plau..." refers background in this paper

  • [...]

  • [...]

  • [...]

Journal ArticleDOI

[...]

TL;DR: Comparison of velocity parameters, substrate selectivity, and regioselectivity of the methylation of both enzyme forms, and a revised mechanism for the reaction cycle are discussed.
Abstract: Human soluble (S) and membrane-bound (MB) catechol O-methyltransferase (COMT, EC 2.1.1.6) enzymes have been expressed at sufficiently high levels in Escherichia coli and in baculovirus-infected insect cells to allow kinetic characterization of the enzyme forms. The use of tight-binding inhibitors such as entacapone enabled the estimation of actual enzyme concentrations and, thereby, comparison of velocity parameters, substrate selectivity, and regioselectivity of the methylation of both enzyme forms. Kinetics of the methylation reaction of dopamine, (-)-noradrenaline, L-dopa, and 3,4-dihydroxybenzoic acid was studied in detail. Here, the catalytic number (Vmax) of S-COMT was somewhat higher than that of MB-COMT for all four substrates. The Km values varied considerably, depending on both substrate and enzyme form. S-COMT showed about 15 times higher Km values for catecholamines than MB-COMT. The distinctive difference between the enzyme forms was also the higher affinity of MB-COMT for the coenzyme S-adenosyl-L-methionine (AdoMet). The average dissociation constants Ks were 3.4 and 20.2 microM for MB-COMT and S-COMT, respectively. Comparison between the kinetic results and the atomic structure of S-COMT is presented, and a revised mechanism for the reaction cycle is discussed. Two recently published human COMT cDNA sequences differed in the position of S-COMT amino acid 108, the residue being either Val-108 [Lundstrom et al. (1991) DNA Cell. Biol. 10, 181-189] or Met-108 [Bertocci et al. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 1416-1420].(ABSTRACT TRUNCATED AT 250 WORDS)

1,116 citations


"Diverse facets of COMT: from a plau..." refers background in this paper

  • [...]

  • [...]

Journal ArticleDOI

[...]

TL;DR: It is predicted that the atypical antipsychotic effect can be produced by appropriate modulation of the D(2) receptor alone; the blockade of other receptors is neither necessary nor sufficient.
Abstract: OBJECTIVE: Although atypical antipsychotics are becoming the treatment of choice for schizophrenia, what makes an antipsychotic “atypical” is not clear. This article provides a new hypothesis about the mechanism of action of atypical antipsychotics. METHOD: Published data regarding the molecular, animal model, neuroimaging, and clinical aspects of typical and atypical antipsychotics were reviewed to develop this hypothesis. Particular attention was paid to data regarding the role of the serotonin 5-HT2 and dopamine D4 receptors in atypicality. RESULTS: Neuroimaging data show that optimal dopamine D2 occupancy is sufficient to produce the atypical antipsychotic effect. Freedom from motor side effects results from low D2 occupancy, not from high 5-HT2 occupancy. If D2 occupancy is excessive, atypicality is lost even in the presence of high 5-HT2 occupancy. Animal data show that a rapid dissociation from the D2 receptor at a molecular level produces the atypical antipsychotic effect. In vitro data show that ...

1,077 citations


"Diverse facets of COMT: from a plau..." refers background in this paper

  • [...]

Journal Article

[...]

TL;DR: The enzyme responsible for the O- methylation, catechol- O -methyltransferase (COMT) was partly purified and characterized by the same group as EC, which first described the enzyme-catalyzed O-methylation of catechlamines and other catechols in the late 1950s.
Abstract: [Axelrod et al. (1958)][1] first described the enzyme-catalyzed O- methylation of catecholamines and other catechols in the late 1950s. The enzyme responsible for the O- methylation, catechol- O -methyltransferase (COMT; EC[2.1.1.6][2]),2 was partly purified and characterized by the same group ([

1,042 citations