scispace - formally typeset
Journal ArticleDOI

Do we underestimate the importance of water in cell biology

Reads0
Chats0
TLDR
Water can generate small active clusters and macroscopic assemblies, which can both transmit information on different scales and allow water to execute an intricate three-dimensional 'ballet' while retaining complex order and enduring effects.
Abstract
Liquid water is a highly versatile material. Although it is formed from the tiniest of molecules, it can shape and control biomolecules. The hydrogen-bonding properties of water are crucial to this versatility, as they allow water to execute an intricate three-dimensional 'ballet', exchanging partners while retaining complex order and enduring effects. Water can generate small active clusters and macroscopic assemblies, which can both transmit information on different scales.

read more

Citations
More filters
Journal ArticleDOI

Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine.

TL;DR: The accumulated data on the biological activity of ionic liquids, including their antimicrobial and cytotoxic properties, are discussed in view of possible applications in drug synthesis and drug delivery systems.
Journal ArticleDOI

Dissecting the THz spectrum of liquid water from first principles via correlations in time and space.

TL;DR: This result provides a molecular mechanism explaining the experimentally determined sensitivity of absorption changes in the THz domain in terms of distinct, solute-induced dynamical properties in solvation shells of (bio)molecules—even in the absence of well-defined resonances.
Journal ArticleDOI

On the molecular mechanism of water reorientation.

TL;DR: The water re orientation is shown to occur through large-amplitude angular jumps due to the exchange of hydrogen (H)-bond acceptors, with a minor contribution from the diffusive H-bond frame reorientation between these exchanges.
Journal ArticleDOI

Multiscale modeling of emergent materials: biological and soft matter

TL;DR: This review of current related issues in multiscale modeling of soft and biological matter focuses on solvent-free modeling which offers a different route to coarse graining by integrating out the degrees of freedom associated with solvent.
References
More filters
Journal ArticleDOI

Comparison of simple potential functions for simulating liquid water

TL;DR: In this article, the authors compared the Bernal Fowler (BF), SPC, ST2, TIPS2, TIP3P, and TIP4P potential functions for liquid water in the NPT ensemble at 25°C and 1 atm.
Journal ArticleDOI

The missing term in effective pair potentials

TL;DR: On the other hand, in this paper, a superparamagnetically collapsed Mossbauer spectrum is obtained for carbon with fewer active sites, and these particles sinter and carburize in a manner more similar to that of Fe particles supported on graphite.
Journal ArticleDOI

Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid

James D. Watson, +1 more
- 25 Apr 1953 - 
TL;DR: The determination in 1953 of the structure of deoxyribonucleic acid (DNA), with its two entwined helices and paired organic bases, was a tour de force in X-ray crystallography and opened the way for a deeper understanding of perhaps the most important biological process.
Book ChapterDOI

Some factors in the interpretation of protein denaturation.

TL;DR: The chapter reviews that the denaturation is a process in which the spatial arrangement of the polypeptide chains within the molecule is changed from that typical of the native protein to a more disordered arrangement.
Journal ArticleDOI

A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions

TL;DR: In this paper, the spectral and x-ray properties of water and ionic solutions have been deduced quantitatively in good agreement with experiment using a model of the water molecule derived from spectral and X-ray data.
Related Papers (5)