scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Domain Engineered Lead-Free Ceramics with Large Energy Storage Density and Ultra-High Efficiency under Low Electric Fields.

21 May 2021-ACS Applied Materials & Interfaces (American Chemical Society (ACS))-Vol. 13, Iss: 21, pp 25143-25152
TL;DR: In this paper, the authors adopt the strategy of domain engineering to develop sodium bismuth titanate (Bi0.5Na 0.5TiO3)-based ceramics employed in the low-field situation.
Abstract: Dielectric energy storage materials are becoming increasingly popular due to their potential superiority, for example, excellent pulse performance as well as good fatigue resistance. Although numerous studies have focused on lead-free dielectric materials which possess outstanding energy storage characteristics, the results are still not satisfying in terms of achieving both large discharging energy density (Wd) and high discharging efficiency (η) under low electric fields, which is crucial to be conducted in miniatured electronic components. Here, we adopt the strategy of domain engineering to develop sodium bismuth titanate (Bi0.5Na0.5TiO3)-based ceramics employed in the low-field situation. Remarkably, a large Wd of 2.86 J/cm3 and an ultrahigh η of 90.3% are concurrently obtained in 0.94(Bi0.5Na0.5)0.65(Ba0.3Sr0.7)0.35TiO3-0.06 Bi(Zn2/3Nb1/3)O3 system when the electric field is as low as 180 kV/cm. Additionally, the ceramic shows brilliant thermal endurance (20-160 °C) and frequency stability (0.1-100 Hz) with high Wd (>1.48 J/cm3) together with an ultra-high η (>90%). What's more, the ceramic displays a fast charge-discharge time (t0.9 = 109.2 ns). The piezoresponse force microscopy (PFM) results reveal that the introduced Bi(Zn2/3Nb1/3)O3 disrupts the microdomains of (Bi0.5Na0.5)0.65(Ba0.3Sr0.7)0.35TiO3 ceramics and promotes the formation of nanodomains, leading to enhanced energy storage properties. The current work may arouse interest in developing low-field high-performing dielectric capacitors for energy storage application.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors present an overview on the current state-of-the-art lead-free bulk ceramics for electrical energy storage applications, including (SrirTiO3, CaTiO), BaTiO, (Bi0.5Na 0.5), (K0.1 Na 0.1), (NbO3), BiFeO, AgNiO, and NaNbo3-based Ceramics.
Abstract: Compared with fuel cells and electrochemical capacitors, dielectric capacitors are regarded as promising devices to store electrical energy for pulsed power systems due to their fast charge/discharge rates and ultrahigh power density. Dielectric materials are core components of dielectric capacitors and directly determine their performance. Over the past decade, extensive efforts have been devoted to develop high-performance dielectric materials for electrical energy storage applications and great progress has been achieved. Here, we present an overview on the current state-of-the-art lead-free bulk ceramics for electrical energy storage applications, including SrTiO3, CaTiO3, BaTiO3, (Bi0.5Na0.5)TiO3, (K0.5Na0.5)NbO3, BiFeO3, AgNbO3 and NaNbO3-based ceramics. This review starts with a brief introduction of the research background, the development history and the basic fundamentals of dielectric materials for energy storage applications as well as the universal strategies to optimize their energy storage performance. Emphases are placed on the design strategies for each type of dielectric ceramic based on their special physical properties with a summary of their respective advantages and disadvantages. Challenges along with future prospects are presented at the end of this review. This review will not only accelerate the exploration of higher performance lead-free dielectric materials, but also provides a deeper understanding of the relationship among chemical composition, physical properties and energy storage performance.

191 citations

Journal ArticleDOI
TL;DR: In this article , a synergistic optimization strategy was proposed to enhance DBS by tailoring grain size to submicron scale and inducing the temperature range between the maximum dielectric permittivity temperature ( T max ) and the Burns temperature (T B ) to room temperature, for solving the bottleneck.

92 citations

Journal ArticleDOI
TL;DR: In this article , a lead-free dielectric ceramics with ultrahigh energy storage performance was developed for next-generation high-power capacitors, achieving a record-breaking energy efficiency of 97.8% .
Abstract: Developing environmentally friendly lead-free dielectric ceramics with ultrahigh energy storage performance is fundamental to next-generation high-power capacitors but challenging as well. Herein, a record-breaking ultrahigh energy efficiency η of 97.8%...

38 citations

Journal ArticleDOI
TL;DR: In this paper , a strategy combining phase adjustment and domain control via doping was proposed to enhance the energy storage performance, which showed that La3+ ions doped into BNT-BT improved crystal structure symmetry and induced a strong dielectric relaxation behavior.
Abstract: The development of high-performance energy storage materials is decisive for meeting the miniaturization and integration requirements in advanced pulse power capacitors. In this study, we designed high-performance [(Bi0.5Na0.5)0.94Ba0.06](1-1.5x)LaxTiO3 (BNT-BT-xLa) lead-free energy storage ceramics based on their phase diagram. A strategy combining phase adjustment and domain control via doping was proposed to enhance the energy storage performance. The obtained results showed that La3+ ions doped into BNT-BT improved the crystal structure symmetry and induced a strong dielectric relaxation behavior, which destroyed the long-term ferroelectric order and effectively promoted the formation of polar nanoregions. At x = 0.12, a high recoverable energy density (Wrec) of ∼5.93 J/cm3 and a relatively large energy storage efficiency (η) of 77.6% were obtained under a high breakdown electric field of 440 kV/cm. By using a two-step sintering approach for the microstructural optimization, the energy storage performance was further improved, yielding much higher Wrec (6.69 J/cm3) and η (87.0%). Additionally, both conventionally sintered and two-step-sintered samples showed excellent frequency stability (0.5-500 Hz), thermal endurance (25-180 °C), and fatigue resistance (105 cycles). Regarding the pulse charge-discharge performance, the samples exhibited ultrashort discharge time (t0.9 ∼ 89 ns for the conventionally sintered sample and ∼75 ns for the two-step-sintered sample) under an electric field of 240 kV/cm. Furthermore, the breakdown process of the material was simulated based on the finite element analysis, and it was shown that high breakdown strength of the material could be ascribed to fine grains, which significantly hindered the crack propagation during the application of the electric field. These results show that the presented materials have great potential as high-energy storage capacitors.

34 citations

Journal ArticleDOI
TL;DR: In this article , a relaxor antiferroelectric (AFE) ceramic capacitors with high energy density, high efficiency, and high power density were designed for next-generation pulsed power capacitors.
Abstract: Relaxor antiferroelectric (AFE) ceramic capacitors have drawn growing attention in future advanced pulsed power devices for their superior energy storage performance. However, state of the art dielectric materials are restricted by desirable comprehensive energy-storage features, which have become a longstanding hurdle for actual capacitor applications. Here, we report that a large energy density Wrec of 5.52 J/cm3, high efficiency η of 83.3% at 560 kV/cm, high power density PD of 114.8 MW/cm3, ultrafast discharge rate t0.9 of 45 ns, and remarkable stability against temperature (30-140 °C)/frequency (5-200 Hz)/cycles (1-105) are simultaneously achieved in 0.7 NaNbO3-0.3 CaTiO3 relaxor AFE ceramics via the synergy of stabilized AFE R phase and domain engineering in combination with breakdown strength enhancement. The structural origin for these achievements is disclosed by probing the in situ microstructure evolution by means of the first-order reversal curve method, piezoelectric force microscopy, and Raman spectroscopy. The highly dynamic polar nanoregions and stabilized AFE R phase synergistically generate a linear-like and highly stable polarization field response over a wide temperature and field scope with concurrently improved energy density and efficiency. This work offers a new solution for designing high-performance next-generation pulsed power capacitors.

27 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the lattice dynamics and the peculiar dielectric relaxation in relaxors are discussed, and theoretical models for the mechanisms of PNR formation and freezing into nonergodic glassy state are also presented.
Abstract: Relaxor ferroelectrics were discovered almost 50 years ago among the complex oxides with perovskite structure. In recent years this field of research has experienced a revival of interest. In this paper we review the progress achieved. We consider the crystal structure including quenched compositional disorder and polar nanoregions (PNR), the phase transitions including compositional order-disorder transition, transition to nonergodic (probably spherical cluster glass) state and to ferroelectric phase. We discuss the lattice dynamics and the peculiar (especially dielectric) relaxation in relaxors. Modern theoretical models for the mechanisms of PNR formation and freezing into nonergodic glassy state are also presented.

1,784 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize the principles of dielectric energy-storage applications, and recent developments on different types of Dielectrics, namely linear dielectrics (LDE), paraelectric, ferroelectrics, and antiferro electrics, focusing on perovskite lead-free dielectors.

941 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an overview of recent progress in the field of nanostructured dielectric materials targeted for high-temperature capacitive energy storage applications, including polymer nanocomposites, and bulk ceramics and thin films.
Abstract: The demand for high-temperature dielectric materials arises from numerous emerging applications such as electric vehicles, wind generators, solar converters, aerospace power conditioning, and downhole oil and gas explorations, in which the power systems and electronic devices have to operate at elevated temperatures. This article presents an overview of recent progress in the field of nanostructured dielectric materials targeted for high-temperature capacitive energy storage applications. Polymers, polymer nanocomposites, and bulk ceramics and thin films are the focus of the materials reviewed. Both commercial products and the latest research results are covered. While general design considerations are briefly discussed, emphasis is placed on material specifications oriented toward the intended high-temperature applications, such as dielectric properties, temperature stability, energy density, and charge-discharge efficiency. The advantages and shortcomings of the existing dielectric materials are identif...

456 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a new strategy, namely, grain size engineering, to develop K0.5Na 0.5NbO3 (KNN)-based ceramics with both an extremely high recoverable energy storage density (Wrec) and large mechanical properties.

409 citations

Journal ArticleDOI
TL;DR: In this article, a complex-like bonding of the octahedra at the center of the perovskite was determined to be mediated by a loss of hybridization of the 6s2 bismuth lone pair interacting with the oxygen p-orbitals, which triggered both the field-induced phase transition and the loss of macroscopic ferroelectric order at depolarization temperature.
Abstract: Bismuth sodium titanate (BNT)-derived materials have seen a flurry of research interest in recent years because of the existence of extended strain under applied electric fields, surpassing that of lead zirconate titanate (PZT), the most commonly used piezoelectric. The underlying physical and chemical mechanisms responsible for such extraordinary strain levels in BNT are still poorly understood, as is the nature of the successive phase transitions. A comprehensive explanation is proposed here, combining the short-range chemical and structural sensitivity of in situ Raman spectroscopy (under an applied electric field and temperature) with macroscopic electrical measurements. The results presented clarify the causes for the extended strain, as well as the peculiar temperature-dependent properties encountered in this system. The underlying cause is determined to be mediated by the complex-like bonding of the octahedra at the center of the perovskite: a loss of hybridization of the 6s2 bismuth lone pair interacting with the oxygen p-orbitals occurs, which triggers both the field-induced phase transition and the loss of macroscopic ferroelectric order at the depolarization temperature.

394 citations