scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Dosimetric analysis of the short-ranged particle emitter 161 Tb for radionuclide therapy of metastatic prostate cancer

TL;DR: In this article, the authors analyzed the required absorbed doses to detectable metastases when using radionuclides with prostate specific membrane antigen (PSMA)-targeting radioligands to achieve a high probability for metastatic control.
Abstract: The aim of this study was to analyze the required absorbed doses to detectable metastases (Dreq) when using radionuclides with prostate specific membrane antigen (PSMA)-targeting radioligands to achieve a high probability for metastatic control. The Monte Carlo based analysis was performed for the clinically-used radionuclides yttrium-90, iodine-131, lutetium-177, and actinium-225, and the newly-proposed low-energy electron emitter terbium-161. It was demonstrated that metastatic formation rate highly influenced the metastatic distribution. Lower values generated few large detectable metastases, as in the case with oligo metastases, while high values generated a distribution of multiple small detectable metastases, as observed in patients with diffused visualized metastases. With equal number of detectable metastases, the total metastatic volume burden was 4-6 times higher in the oligo metastatic scenario compared to the diffusely visualized scenario. The Dreq was around 30% higher for the situations with 20 detectable metastases compared to one detectable metastasis. The Dreq for iodine-131 and yttrium-90 was high (920-3300 Gy). The Dreq for lutetium-177 was between 560 and 780 Gy and considerably lower Dreq were obtained for actinium-225 and terbium-161, with 240-330 Gy and 210-280 Gy, respectively. In conclusion, the simulations demonstrated that terbium-161 has the potential for being a more effective targeted radionuclide therapy for metastases using PSMA ligands.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This review has summarized and discussed the clinical data of 177Lu- PSMA and 225Ac-PSMA RNT in patients with mCRPC and found promising results have been achieved.
Abstract: For patients with metastatic castration-resistant prostate cancer (mCRPC), the survival benefit of classic treatment options with chemotherapy and drugs targeting androgen signaling is limited. Therefore, beta and alpha radionuclide therapy (RNT) have emerged as novel treatment options for patients with mCRPC. Radioligands target the prostate-specific membrane antigen (PSMA) epitopes, which are upregulated up to a thousand times more in prostate cancer cells compared to the cells in normal tissues. For this reason, PSMA is an excellent target for both imaging and therapy. Over the past years, many studies have investigated the treatment effects of lutetium-177 labeled PSMA (177Lu-PSMA) and actinium-225 labeled PSMA (225Ac-PSMA) RNT in patients with mCRPC. While promising results have been achieved, this field is still in development. In this review, we have summarized and discussed the clinical data of 177Lu-PSMA and 225Ac-PSMA RNT in patients with mCRPC.

7 citations

Journal ArticleDOI
15 Oct 2021-Cancers
TL;DR: In this article, the effects of dose, timing, and sequencing of targeted radionuclide therapy (TRT) and CAR-T cell-based therapies in a multiple myeloma setting were explored.
Abstract: Targeted radionuclide therapy (TRT) has recently seen a surge in popularity with the use of radionuclides conjugated to small molecules and antibodies. Similarly, immunotherapy also has shown promising results, an example being chimeric antigen receptor T cell (CAR-T) therapy in hematologic malignancies. Moreover, TRT and CAR-T therapies possess unique features that require special consideration when determining how to dose as well as the timing and sequence of combination treatments including the distribution of the TRT dose in the body, the decay rate of the radionuclide, and the proliferation and persistence of the CAR-T cells. These characteristics complicate the additive or synergistic effects of combination therapies and warrant a mathematical treatment that includes these dynamics in relation to the proliferation and clearance rates of the target tumor cells. Here, we combine two previously published mathematical models to explore the effects of dose, timing, and sequencing of TRT and CAR-T cell-based therapies in a multiple myeloma setting. We find that, for a fixed TRT and CAR-T cell dose, the tumor proliferation rate is the most important parameter in determining the best timing of TRT and CAR-T therapies.

5 citations

Journal ArticleDOI
Hua Yang1
TL;DR: In this paper , a small solid-phase extraction (SPE) column method was proposed for the removal of radiolanthanide from [160Gd]Gd2O3 targets.
Abstract: 161Tb is a radiolanthanide with the potential to replace 177Lu in targeted radionuclide therapy. 161Tb is produced via the neutron irradiation of [160Gd]Gd2O3 targets, and must be purified from 160Gd and the decay product 161Dy prior to use. Established purification methods require complex conditions or high-pressure ion chromatography (HPIC) which are inconvenient to introduce in a broad user community. This study aims to find a simpler small solid-phase extraction (SPE) column method for 161Tb purification that is more suitable for automation with commercially available systems like TRASIS.We first tested the distribution coefficients on TK211 and TK212 resins for the separation of Gd, Tb, and Dy, and subsequently developed a method to separate these metal ions, with an additional TK221 resin to concentrate the final product. A side-by-side comparison of the products purified using this new method with the HPIC method was undertaken, assessing the radionuclidic purity, chemical purity regarding Gd and Dy, and labeling efficiency with a standard chelate (DOTA) and a novel chelate (crown). The two methods have comparable radionuclidic purity and labeling efficiency. The small SPE column method reduced Gd content to nanogram level, although still higher than the HPIC method. An ICP-MS method to quantify 161Tb, 159Tb, 160Gd, and 161Dy was developed with the application of mass-shift by ammonia gas. Last, 161Tb produced from the small SPE column method was used to assess the biodistribution of [161Tb]Tb-crown-αMSH, and the results were comparable to the HPIC produced 161Tb.161Tb was successfully purified by a semi-automated TRASIS system using a combination of TrisKem extraction resins. The resulting product performed well in radiolabelling and in vivo experiments. However, improvement can be made in the form of further reduction of 160Gd target material in the final product. An ICP-MS method to analyze the radioactive product was developed. Combined with gamma spectroscopy, this method allows the purity of 161Tb being assessed before the decay of the product, providing a useful tool for quality control.

2 citations

Journal ArticleDOI
TL;DR: In this paper , the authors used voxel-based skeletal dosimetry models in which active bone marrow is defined as regions containing stem cells and progenitor cells of the hematopoietic lineage.
Abstract: Based on theoretical and preclinical results, terbium-161 may be a valid alternative to lutetium-177 and yttrium-90 in radionuclide therapies. The large low-energy electron emission from terbium-161 is a favorable feature in the treatment of disseminated disease, but its impact on the radiosensitive bone marrow needs to be evaluated. Using voxel-based skeletal dosimetry models in which active bone marrow is defined as regions containing stem cells and progenitor cells of the hematopoietic lineage, we generated S-values (absorbed dose per decay) for terbium-161 and evaluated its distribution-dependence in bone marrow cavities.S-values in the active bone marrow were calculated for terbium-161, lutetium-177, and yttrium-90 irradiation using two (male/female) image-based bone marrow dosimetry models. The radionuclides were distributed to one of the three structures that define the spongiosa bone region in the skeletal models: (i) active bone marrow, (ii) inactive bone marrow, or (iii) surface or whole volume of the trabecular bone. Decay data from ICRP 107 were combined with specific absorbed fractions to calculate S-values for 13 skeletal sites. To increase the utility, the skeletal site-specific S-values were averaged to produce whole-body average S-values and spongiosa average S-values.For yttrium-90, the high-energy β particles irradiate the active marrow regardless of the source compartment, consistently generating the highest S-values (65-90% higher). Between terbium-161 and lutetium-177, the largest differences in S-values were with an active marrow source (50%), such as self-irradiation, due to the contribution of the short-ranged conversion and Auger electrons from terbium-161. Their influence decreased as the source moved to inactive marrow or the surface or volume of the trabecular bone, reducing the S-values and the differences between terbium-161 and lutetium-177 (15-35%).The S-values of terbium-161 for active bone marrow and, consequently, the bone marrow toxicity profile were more dependent on the radionuclide distribution within the bone marrow cavity than the S-values of lutetium-177 and yttrium-90. This effect was attributed to the considerable low-energy electron emission of terbium-161. Therefore, it will be critical to investigate the bone marrow distribution of a particular radiopharmaceutical for accurate estimation of the active bone marrow dose.

2 citations

Journal ArticleDOI
01 Jan 2022-Cancers
TL;DR: The interest in using targeted radiopharmaceuticals in nuclear oncology has increased in recent years and continues to grow, and the number of studies is likely to grow further.
Abstract: The interest in using targeted radiopharmaceuticals in nuclear oncology has increased in recent years and continues to grow [...].

2 citations

References
More filters
Journal ArticleDOI
TL;DR: It is shown that bone, lung, and liver are the most frequent sites of distant prostate cancer metastases and there are strong arguments for the existence and clinical significance of a backward venous spread to the spine, which is likely to occur early in the metastatic process.

1,615 citations

Journal ArticleDOI
16 Apr 2015-Nature
TL;DR: In this article, the existence of polyclonal seeding in human malignancy and the clonal relationship among different metastases in the context of androgen-deprived metastatic prostate cancer was established.
Abstract: Cancers emerge from an ongoing Darwinian evolutionary process, often leading to multiple competing subclones within a single primary tumour. This evolutionary process culminates in the formation of metastases, which is the cause of 90% of cancer-related deaths. However, despite its clinical importance, little is known about the principles governing the dissemination of cancer cells to distant organs. Although the hypothesis that each metastasis originates from a single tumour cell is generally supported, recent studies using mouse models of cancer demonstrated the existence of polyclonal seeding from and interclonal cooperation between multiple subclones. Here we sought definitive evidence for the existence of polyclonal seeding in human malignancy and to establish the clonal relationship among different metastases in the context of androgen-deprived metastatic prostate cancer. Using whole-genome sequencing, we characterized multiple metastases arising from prostate tumours in ten patients. Integrated analyses of subclonal architecture revealed the patterns of metastatic spread in unprecedented detail. Metastasis-to-metastasis spread was found to be common, either through de novo monoclonal seeding of daughter metastases or, in five cases, through the transfer of multiple tumour clones between metastatic sites. Lesions affecting tumour suppressor genes usually occur as single events, whereas mutations in genes involved in androgen receptor signalling commonly involve multiple, convergent events in different metastases. Our results elucidate in detail the complex patterns of metastatic spread and further our understanding of the development of resistance to androgen-deprivation therapy in prostate cancer.

1,095 citations

Journal ArticleDOI
TL;DR: All the estimates point toward low values of α/β, at least as low as the estimates of Brenner and Hall, and possibly lower than the expected values of about 3 Gy for late complications.
Abstract: Purpose: Brenner and Hall’s 1999 paper estimating an α/β value of 1.5 Gy for prostate tumors has stimulated much interest in the question of whether this ratio (of intrinsic radiosensitivity to repair capacity) is much lower in prostate tumors than in other types of tumors that proliferate faster. The implications for possibly treating prostatic cancer using fewer and larger fractions are important. In this paper we review updated clinical data and present somewhat different calculations to estimate α/β. Methods and Materials: Seventeen clinical papers published from 1995 to 2000 were reviewed to obtain estimates of biochemical control from radiotherapy alone using external beam, I-125 implants, or Pd-103 implants. The focus was on intermediate risk patients. Three methods of estimating α/β were employed. First, a simple two-step graphical comparison of isoeffective doses from external beam and implant modalities was made, to see which value of α/β predicted the observed identity of biologic effect. Second, the same data were subjected to Direct Analysis (maximum likelihood estimation), from which an estimate of α/β and also of the T 1 2 of repair of sublethal damage in the tumors (both with confidence intervals) were obtained. Third, preliminary clinical data comparing two different sizes of high-dose boost doses were analyzed in which significantly different bNED was observed at 2 years. Results: The second method gave the definitive result of α/β = 1.49 Gy (95% CI 1.25–1.76) and T 1 2 = 1.90 h (95% CI 1.42–2.86 h). The first method gave a range from 1.4 to 1.9 Gy and showed that if mean or median dose were used instead of prescribed dose, the estimate of α/β would be substantially below 1 Gy. The third method, although based on early follow-up, was consistent with low values of α/β in the region of 2 Gy or below. The estimate for T 1 2 is the first value reported for prostate tumors in situ. Conclusions: All the estimates point toward low values of α/β, at least as low as the estimates of Brenner and Hall, and possibly lower than the expected values of about 3 Gy for late complications. Hypofractionation trials for intermediate-risk prostatic cancer appear to be indicated.

604 citations

Journal ArticleDOI
TL;DR: PSMA RLT with 177Lu-PSMA is feasible, safe, and effective in end-stage progressive mCRPC with appropriate selection and follow-up of patients by 68Ga-PSma PET/CT through application of the concept of theranostics.
Abstract: The objective of this study was to analyze the safety and efficacy of the 177Lu-labeled DOTAGA-based prostate-specific membrane antigen (PSMA) ligand 177Lu-DOTAGA-(I-y)fk(Sub-KuE) (177Lu-PSMA) in patients with metastatic castration-resistant prostate cancer (mCRPC). Methods: Fifty-six mCRPC patients underwent PSMA radioligand therapy (RLT) with 177Lu-PSMA. 68Ga-PSMA-(N,N9-bis-[2-hydroxy-5-(carboxyethyl)benzyl]ethylenediamine-N,N9-diacetic acid) (68Ga-PSMA) PET/CT was used for patient selection and follow-up after PSMA RLT. Hematologic status, renal function, and serum prostate-specific antigen levels were documented before and after therapy. Dosimetry was performed in 30 patients. Results:177Lu-PSMA demonstrated high absorbed tumor doses (median, 3.3 mGy/MBq) compared with the levels in normal organs. Parotid glands received higher doses (1.3 mGy/MBq) than kidneys (0.8 mGy/MBq). All patients tolerated the therapy without any acute adverse effects. Except for mild reversible xerostomia in 2 patients, no long-term side effects were observed. There was a small but statistically significant reduction in erythrocyte and leukocyte counts; only the reduction in erythrocyte counts decreased slightly below the reference range. No thrombocytopenia occurred. The severity of pain was significantly reduced in 2 of 6 patients (33.3%). A decrease in prostate-specific antigen levels was noted in 45 of 56 patients (80.4%). Of 25 patients monitored for at least 6 mo after 2 or more PSMA RLT cycles, a molecular response evaluation (68Ga-PSMA PET/CT) revealed partial remission in 14, stable disease in 2, and progressive disease in 9 patients. Contrast-enhanced CT revealed partial remission in 5, stable disease in 13, and progressive disease in 7 patients. The median progression-free survival was 13.7 mo, and the median overall survival was not reached during follow-up for 28 mo. Conclusion: PSMA RLT with 177Lu-PSMA is feasible, safe, and effective in end-stage progressive mCRPC with appropriate selection and follow-up of patients by 68Ga-PSMA PET/CT through application of the concept of theranostics.

394 citations

Journal ArticleDOI
TL;DR: For advanced-stage patients, a treatment activity of 100 kBq/kg of 225Ac-PSMA-617 per cycle repeated every 8 wk presents a reasonable trade-off between toxicity and biochemical response.
Abstract: The aim of this study was to develop a treatment protocol for 225Ac-PSMA-617 α-radiation therapy in advanced-stage, metastatic castration-resistant prostate cancer patients with prostate-specific membrane antigen (PSMA)-positive tumor phenotype. Methods: A dosimetry estimate was calculated on the basis of time-activity curves derived from serially obtained 177Lu-PSMA-617 scans extrapolated to the physical half-life of 225Ac, assuming instant decay of unstable daughter nuclides. Salvage therapies empirically conducted with 50 (n = 4), 100 (n = 4), 150 (n = 2), and 200 kBq/kg (n = 4) of 225Ac-PSMA-617 were evaluated retrospectively regarding toxicity and treatment response. Eight of 14 patients received further cycles in either 2- or 4-mo intervals with identical or deescalated activities. Results: Dosimetry estimates for 1 MBq of 225Ac-PSMA-617 assuming a relative biologic effectiveness of 5 revealed mean doses of 2.3 Sv for salivary glands, 0.7 Sv for kidneys, and 0.05 Sv for red marrow that are composed of 99.4% α, 0.5% β, and 0.1% photon radiation, respectively. In clinical application, severe xerostomia became the dose-limiting toxicity if treatment activity exceeded 100 kBq/kg per cycle. At 100 kBq/kg, the duration of prostate-specific antigen decline was less than 4 mo, but if therapy was repeated every 2 mo patients experienced additive antitumor effects. Treatment activities of 50 kBq/kg were without toxicity but induced insufficient antitumor response in these high-tumor-burden patients. Remarkable antitumor activity by means of objective radiologic response or tumor marker decline was observed in 9 of 11 evaluable patients. Conclusion: For advanced-stage patients, a treatment activity of 100 kBq/kg of 225Ac-PSMA-617 per cycle repeated every 8 wk presents a reasonable trade-off between toxicity and biochemical response.

333 citations

Related Papers (5)