scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Double‐Network Hydrogels with Extremely High Mechanical Strength

17 Jul 2003-Advanced Materials (WILEY‐VCH Verlag)-Vol. 15, Iss: 14, pp 1155-1158
About: This article is published in Advanced Materials.The article was published on 2003-07-17. It has received 3307 citations till now. The article focuses on the topics: Self-healing hydrogels.
Citations
More filters
Journal ArticleDOI
06 Sep 2012-Nature
TL;DR: The synthesis of hydrogels from polymers forming ionically and covalently crosslinked networks is reported, finding that these gels’ toughness is attributed to the synergy of two mechanisms: crack bridging by the network of covalent crosslinks, and hysteresis by unzipping thenetwork of ionic crosslinks.
Abstract: Hydrogels with improved mechanical properties, made by combining polymer networks with ionic and covalent crosslinks, should expand the scope of applications, and may serve as model systems to explore mechanisms of deformation and energy dissipation. Hydrogels are used in flexible contact lenses, as scaffolds for tissue engineering and in drug delivery. Their poor mechanical properties have so far limited the scope of their applications, but new strong and stretchy materials reported here could take hydrogels into uncharted territories. The new system involves a double-network gel, with one network forming ionic crosslinks and the other forming covalent crosslinks. The fracture energy of these materials is very high: they can stretch to beyond 17 times their own length even when containing defects that usually initiate crack formation in hydrogels. The materials' toughness is attributed to crack bridging by the covalent network accompanied by energy dissipation through unzipping of the ionic crosslinks in the second network. Hydrogels are used as scaffolds for tissue engineering1, vehicles for drug delivery2, actuators for optics and fluidics3, and model extracellular matrices for biological studies4. The scope of hydrogel applications, however, is often severely limited by their mechanical behaviour5. Most hydrogels do not exhibit high stretchability; for example, an alginate hydrogel ruptures when stretched to about 1.2 times its original length. Some synthetic elastic hydrogels6,7 have achieved stretches in the range 10–20, but these values are markedly reduced in samples containing notches. Most hydrogels are brittle, with fracture energies of about 10 J m−2 (ref. 8), as compared with ∼1,000 J m−2 for cartilage9 and ∼10,000 J m−2 for natural rubbers10. Intense efforts are devoted to synthesizing hydrogels with improved mechanical properties11,12,13,14,15,16,17,18; certain synthetic gels have reached fracture energies of 100–1,000 J m−2 (refs 11, 14, 17). Here we report the synthesis of hydrogels from polymers forming ionically and covalently crosslinked networks. Although such gels contain ∼90% water, they can be stretched beyond 20 times their initial length, and have fracture energies of ∼9,000 J m−2. Even for samples containing notches, a stretch of 17 is demonstrated. We attribute the gels’ toughness to the synergy of two mechanisms: crack bridging by the network of covalent crosslinks, and hysteresis by unzipping the network of ionic crosslinks. Furthermore, the network of covalent crosslinks preserves the memory of the initial state, so that much of the large deformation is removed on unloading. The unzipped ionic crosslinks cause internal damage, which heals by re-zipping. These gels may serve as model systems to explore mechanisms of deformation and energy dissipation, and expand the scope of hydrogel applications.

3,856 citations


Cites background from "Double‐Network Hydrogels with Extre..."

  • ...For example, fracture energy of ~1000 J/m2 is achieved with a double-network gel, in which two networks are separately crosslinked by covalent bonds, one network having short chains, and the other having long chains [11]....

    [...]

  • ...Intense efforts are devoted to synthesizing hydrogels of enhanced mechanical properties [11–18]; certain synthetic gels have reached fracture energy of 100–1000 J/m2 [11,14,17]....

    [...]

Journal ArticleDOI
TL;DR: This Review discusses how different mechanisms interact and can be integrated to exert fine control in time and space over the drug presentation, and collects experimental release data from the literature and presents quantitative comparisons between different systems to provide guidelines for the rational design of hydrogel delivery systems.
Abstract: Hydrogel delivery systems can leverage therapeutically beneficial outcomes of drug delivery and have found clinical use. Hydrogels can provide spatial and temporal control over the release of various therapeutic agents, including small-molecule drugs, macromolecular drugs and cells. Owing to their tunable physical properties, controllable degradability and capability to protect labile drugs from degradation, hydrogels serve as a platform in which various physiochemical interactions with the encapsulated drugs control their release. In this Review, we cover multiscale mechanisms underlying the design of hydrogel drug delivery systems, focusing on physical and chemical properties of the hydrogel network and the hydrogel-drug interactions across the network, mesh, and molecular (or atomistic) scales. We discuss how different mechanisms interact and can be integrated to exert fine control in time and space over the drug presentation. We also collect experimental release data from the literature, review clinical translation to date of these systems, and present quantitative comparisons between different systems to provide guidelines for the rational design of hydrogel delivery systems.

2,457 citations

Journal ArticleDOI
TL;DR: In this article, double-network gels are characterized by a special network structure consisting of two types of polymer components with opposite physical natures: the minor component is abundantly crosslinked polyelectrolytes (rigid skeleton) and the major component comprises of poorly cross-linked neutral polymers (ductile substance).
Abstract: Double-network (DN) gels have drawn much attention as an innovative material having both high water content (ca. 90 wt%) and high mechanical strength and toughness. DN gels are characterized by a special network structure consisting of two types of polymer components with opposite physical natures: the minor component is abundantly cross-linked polyelectrolytes (rigid skeleton) and the major component comprises of poorly cross-linked neutral polymers (ductile substance). The former and the latter components are referred to as the first network and the second network, respectively, since the synthesis should be done in this order to realize high mechanical strength. For DN gels synthesized under suitable conditions (choice of polymers, feed compositions, atmosphere for reaction, etc.), they possess hardness (elastic modulus of 0.1–1.0 MPa), strength (failure tensile nominal stress 1–10 MPa, strain 1000–2000%; failure compressive nominal stress 20–60 MPa, strain 90–95%), and toughness (tearing fracture energy of 100∼1000 J m−2). These excellent mechanical performances are comparable to that of rubbers and soft load-bearing bio-tissues. The mechanical behaviors of DN gels are inconsistent with general mechanisms that enhance the toughness of soft polymeric materials. Thus, DN gels present an interesting and challenging problem in polymer mechanics. Extensive experimental and theoretical studies have shown that the toughening of DN gel is based on a local yielding mechanism, which has some common features with other brittle and ductile nano-composite materials, such as bones and dentins.

1,652 citations

Journal ArticleDOI
05 May 2017-Science
TL;DR: The advances in making hydrogels with improved mechanical strength and greater flexibility for use in a wide range of applications are reviewed, foreseeing opportunities in the further development of more sophisticated fabrication methods that allow better-controlled hydrogel architecture across multiple length scales.
Abstract: BACKGROUND Hydrogels are formed through the cross-linking of hydrophilic polymer chains within an aqueous microenvironment. The gelation can be achieved through a variety of mechanisms, spanning physical entanglement of polymer chains, electrostatic interactions, and covalent chemical cross-linking. The water-rich nature of hydrogels makes them broadly applicable to many areas, including tissue engineering, drug delivery, soft electronics, and actuators. Conventional hydrogels usually possess limited mechanical strength and are prone to permanent breakage. The lack of desired dynamic cues and structural complexity within the hydrogels has further limited their functions. Broadened applications of hydrogels, however, require advanced engineering of parameters such as mechanics and spatiotemporal presentation of active or bioactive moieties, as well as manipulation of multiscale shape, structure, and architecture. ADVANCES Hydrogels with substantially improved physicochemical properties have been enabled by rational design at the molecular level and control over multiscale architecture. For example, formulations that combine permanent polymer networks with reversibly bonding chains for energy dissipation show strong toughness and stretchability. Similar strategies may also substantially enhance the bonding affinity of hydrogels at interfaces with solids by covalently anchoring the polymer networks of tough hydrogels onto solid surfaces. Shear-thinning hydrogels that feature reversible bonds impart a fluidic nature upon application of shear forces and return back to their gel states once the forces are released. Self-healing hydrogels based on nanomaterial hybridization, electrostatic interactions, and slide-ring configurations exhibit excellent abilities in spontaneously healing themselves after damages. Additionally, harnessing techniques that can dynamically and precisely configure hydrogels have resulted in flexibility to regulate their architecture, activity, and functionality. Dynamic modulations of polymer chain physics and chemistry can lead to temporal alteration of hydrogel structures in a programmed manner. Three-dimensional printing enables architectural control of hydrogels at high precision, with a potential to further integrate elements that enable change of hydrogel configurations along prescribed paths. OUTLOOK We envision the continuation of innovation in new bioorthogonal chemistries for making hydrogels, enabling their fabrication in the presence of biological species without impairing cellular or biomolecule functions. We also foresee opportunities in the further development of more sophisticated fabrication methods that allow better-controlled hydrogel architecture across multiple length scales. In addition, technologies that precisely regulate the physicochemical properties of hydrogels in spatiotemporally controlled manners are crucial in controlling their dynamics, such as degradation and dynamic presentation of biomolecules. We believe that the fabrication of hydrogels should be coupled with end applications in a feedback loop in order to achieve optimal designs through iterations. In the end, it is the combination of multiscale constituents and complementary strategies that will enable new applications of this important class of materials.

1,588 citations

Journal ArticleDOI
01 Jun 2012-Science
TL;DR: Hydrogels, which consist of highly water swollen cross-linked polymer networks, can now be made with a range of chemistries and a combination of physical and chemical cross-links, finding use in a wide range of applications, including tissue engineering and drug delivery.
Abstract: Hydrogels are polymeric materials distinguished by high water content and diverse physical properties. They can be engineered to resemble the extracellular environment of the body's tissues in ways that enable their use in medical implants, biosensors, and drug-delivery devices. Cell-compatible hydrogels are designed by using a strategy of coordinated control over physical properties and bioactivity to influence specific interactions with cellular systems, including spatial and temporal patterns of biochemical and biomechanical cues known to modulate cell behavior. Important new discoveries in stem cell research, cancer biology, and cellular morphogenesis have been realized with model hydrogel systems premised on these designs. Basic and clinical applications for hydrogels in cell therapy, tissue engineering, and biomedical research continue to drive design improvements using performance-based materials engineering paradigms.

1,552 citations