scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae

01 Feb 1984-The Astrophysical Journal (IOP)-Vol. 277, Iss: 1, pp 355-360
TL;DR: In this article, the authors explored the role of mass transfer in the evolution of double degenerate systems and found that low-mass helium/helium pairs are unstable to dynamical time-scale mass transfer and probably coalesce to form helium-burning sdO stars.
Abstract: Close double white dwarfs should arise from the second phase of mass exchagne in close binaries which first encountered mass exchange while the more massive star was crossing the Hertzprung gap. Tidal mass transfer in these double degenerate systems is explored. The sequence of double white dwarf divides naturally into three segments. (1) Low-mass helium/helium pairs are unstable to dynamical time-scale mass transfer and probably coalesce to form helium-burning sdO stars. (2) In helium/carbon-oxygen pairs, mass transfer occurs on the time scale for gravitational radiation losses (approx.10/sup -4/ M/sub sun/ yr/sup -1/); the accreted helium is quickly ignited, and the accretor expands to dimensions characteristic of R CrB stars, engulfing its companion star. (3) Carbon-oxygen/carbon-oxygen pairs are again unstable to dynamical time-scale mass transfer and, since their total masses exceed the Chandrasekhar limit, are destined to become supernovae. Inactive lifetimes in these latter systems between creation and interaction can exceed 10/sup 10/ years. Birthrates of R CrB stars and Type I supernovae by evolution of double white dwarfs are in reasonable agreement with observational estimates.
Citations
More filters
Journal ArticleDOI
26 Apr 2013-Science
TL;DR: Pulsar J0348+0432 is only the second neutron star with a precisely determined mass of 2 M☉
Abstract: Many physically motivated extensions to general relativity (GR) predict significant deviations at energies present in massive neutron stars. We report the measurement of a 2.01 \(\pm \) 0.04 solar mass (M\(_\odot \)) pulsar in a 2.46-h orbit around a 0.172 \(\pm \) 0.003 M\(_\odot \) white dwarf. The high pulsar mass and the compact orbit make this system a sensitive laboratory of a previously untested strong-field gravity regime. Thus far, the observed orbital decay agrees with GR, supporting its validity even for the extreme conditions present in the system. The resulting constraints on deviations support the use of GR-based templates for ground-based gravitational wave detection experiments. Additionally, the system strengthens recent constraints on the properties of dense matter and provides novel insight to binary stellar astrophysics and pulsar recycling.

3,224 citations

Journal ArticleDOI
13 Jul 1989-Nature
TL;DR: In this paper, it was pointed out that neutron-star collisions should synthesize neutron-rich heavy elements, thought to be formed by rapid neutron capture (the r-process), and these collisions should produce neutrino bursts and resultant bursts of gamma rays; the latter should comprise a subclass of observable gamma-ray bursts.
Abstract: It is pointed out here that neutron-star collisions should synthesize neutron-rich heavy elements, thought to be formed by rapid neutron capture (the r-process). Furthermore, these collisions should produce neutrino bursts and resultant bursts of gamma rays; the latter should comprise a subclass of observable gamma-ray bursts. It is argued that observed r-process abundances and gamma-ray burst rates predict rates for these collisions that are both significant and consistent with other estimates.

1,986 citations

Journal ArticleDOI
TL;DR: In this paper, a rapid binary-evolution algorithm was proposed to model the formation and evolution of binary systems, including all aspects of single-star evolution, features such as mass transfer, mass accretion, common envelope evolution, collisions, supernova kicks and angular momentum loss mechanisms.
Abstract: We present a rapid binary-evolution algorithm that enables modelling of even the most complex binary systems. In addition to all aspects of single-star evolution, features such as mass transfer, mass accretion, common-envelope evolution, collisions, supernova kicks and angular momentum loss mechanisms are included. In particular, circularization and synchronization of the orbit by tidal interactions are calculated for convective, radiative and degenerate damping mechanisms. We use this algorithm to study the formation and evolution of various binary systems. We also investigate the effect that tidal friction has on the outcome of binary evolution. Using the rapid binary code, we generate a series of large binary populations and evaluate the formation rate of interesting individual species and events. By comparing the results for populations with and without tidal friction, we quantify the hitherto ignored systematic effect of tides and show that modelling of tidal evolution in binary systems is necessary in order to draw accurate conclusions from population synthesis work. Tidal synchronism is important but, because orbits generally circularize before Roche lobe overflow, the outcome of the interactions of systems with the same semilatus rectum is almost independent of eccentricity. It is not necessary to include a distribution of eccentricities in population synthesis of interacting binaries; however, the initial separations should be distributed according to the observed distribution of semilatera recta rather than periods or semimajor axes.

1,745 citations


Cites background from "Double white dwarfs as progenitors ..."

  • ...Here we follow this procedure but it is possible that a naked helium star is produced (Webbink 1984)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors calculate explosive nucleosynthesis in relatively slow deflagrations with a variety of deflagration speeds and ignition densities to put new constraints on the above key quantities.
Abstract: The major uncertainties involved in the Chandrasekhar mass models for Type Ia supernovae (SNe Ia) are related to the companion star of their accreting white dwarf progenitor (which determines the accretion rate and consequently the carbon ignition density) and the flame speed after the carbon ignition. We calculate explosive nucleosynthesis in relatively slow deflagrations with a variety of deflagration speeds and ignition densities to put new constraints on the above key quantities. The abundance of the Fe group, in particular of neutron-rich species like 48Ca,50Ti,54Cr,54,58Fe, and 58Ni, is highly sensitive to the electron captures taking place in the central layers. The yields obtained from such a slow central deflagration, and from a fast deflagration or delayed detonation in the outer layers, are combined and put to comparison with solar isotopic abundances. To avoid excessively large ratios of 54Cr/56Fe and 50Ti/56Fe, the central density of the average white dwarf progenitor at ignition should be as low as 2 ? 109 g cm-3. To avoid the overproduction of 58Ni and 54Fe, either the flame speed should not exceed a few percent of the sound speed in the central low Ye layers or the metallicity of the average progenitors has to be lower than solar. Such low central densities can be realized by a rapid accretion as fast as -->img1.gif 1 ? 10-7 M? yr-1. In order to reproduce the solar abundance of 48Ca, one also needs progenitor systems that undergo ignition at higher densities. Even the smallest laminar flame speeds after the low-density ignitions would not produce sufficient amount of this isotope. We also found that the total amount of 56Ni, the Si-Ca/Fe ratio, and the abundance of some elements like Mn and Cr (originating from incomplete Si burning), depend on the density of the deflagration-detonation transition in delayed detonations. Our nucleosynthesis results favor transition densities slightly below 2.2 ? 107 g cm-3.

1,353 citations


Cites background from "Double white dwarfs as progenitors ..."

  • ...…i.e., the merging of two C+O white dwarfs in a binary system with a combined mass exceeding the Chandrasekhar mass limit (e.g., Iben & Tutukov 1984; Webbink 1984) and (2) a single degenerate scenario, i.e., accretion of hydrogen or helium via mass transfer from a binary companion at a relatively…...

    [...]

Journal ArticleDOI
TL;DR: In this article, calibrated light curves of type Ia supernovae have become a major tool to determine the local expansion rate of the universe and also its geometrical structure, considerable atte
Abstract: ▪ Abstract Because calibrated light curves of type Ia supernovae have become a major tool to determine the local expansion rate of the universe and also its geometrical structure, considerable atte...

1,203 citations


Cites background from "Double white dwarfs as progenitors ..."

  • ...Double-degenerates as potential type Ia progenitors had many ups and downs in the past, beginning with the classic papers of Iben & Tutukov (1984) and Webbink (1984)....

    [...]

  • ...5.3 Merging White Dwarfs The most obvious strength of the merging white dwarfs, or double-degenerate, scenario for SNe Ia (Webbink 1984, Iben & Tutukov 1984, Paczynski 1985) is the natural explanation for the lack of hydrogen in SN Ia spectra (Livio 1999) (cf Section 2.1)....

    [...]

Related Papers (5)