scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

DRISA: a DRAM-based Reconfigurable In-Situ Accelerator

14 Oct 2017-pp 288-301
TL;DR: DRISA, a DRAM-based Reconfigurable In-Situ Accelerator architecture, is proposed to provide both powerful computing capability and large memory capacity/bandwidth to address the memory wall problem in traditional von Neumann architecture.
Abstract: Data movement between the processing units and the memory in traditional von Neumann architecture is creating the “memory wall” problem. To bridge the gap, two approaches, the memory-rich processor (more on-chip memory) and the compute-capable memory (processing-in-memory) have been studied. However, the first one has strong computing capability but limited memory capacity/bandwidth, whereas the second one is the exact the opposite.To address the challenge, we propose DRISA, a DRAM-based Reconfigurable In-Situ Accelerator architecture, to provide both powerful computing capability and large memory capacity/bandwidth. DRISA is primarily composed of DRAM memory arrays, in which every memory bitline can perform bitwise Boolean logic operations (such as NOR). DRISA can be reconfigured to compute various functions with the combination of the functionally complete Boolean logic operations and the proposed hierarchical internal data movement designs. We further optimize DRISA to achieve high performance by simultaneously activating multiple rows and subarrays to provide massive parallelism, unblocking the internal data movement bottlenecks, and optimizing activation latency and energy. We explore four design options and present a comprehensive case study to demonstrate significant acceleration of convolutional neural networks. The experimental results show that DRISA can achieve 8.8× speedup and 1.2× better energy efficiency compared with ASICs, and 7.7× speedup and 15× better energy efficiency over GPUs with integer operations.CCS CONCEPTS• Hardware → Dynamic memory; • Computer systems organization → reconfigurable computing; Neural networks;
Citations
More filters
Journal ArticleDOI
TL;DR: This Review provides an overview of memory devices and the key computational primitives enabled by these memory devices as well as their applications spanning scientific computing, signal processing, optimization, machine learning, deep learning and stochastic computing.
Abstract: Traditional von Neumann computing systems involve separate processing and memory units. However, data movement is costly in terms of time and energy and this problem is aggravated by the recent explosive growth in highly data-centric applications related to artificial intelligence. This calls for a radical departure from the traditional systems and one such non-von Neumann computational approach is in-memory computing. Hereby certain computational tasks are performed in place in the memory itself by exploiting the physical attributes of the memory devices. Both charge-based and resistance-based memory devices are being explored for in-memory computing. In this Review, we provide a broad overview of the key computational primitives enabled by these memory devices as well as their applications spanning scientific computing, signal processing, optimization, machine learning, deep learning and stochastic computing. This Review provides an overview of memory devices and the key computational primitives for in-memory computing, and examines the possibilities of applying this computing approach to a wide range of applications.

841 citations

01 Nov 1997
TL;DR: Recognizing the mannerism ways to get this books computer organization and design the hardware software interface 4th fourth edition by patterson hennessy is additionally useful.
Abstract: Recognizing the mannerism ways to get this books computer organization and design the hardware software interface 4th fourth edition by patterson hennessy is additionally useful. You have remained in right site to begin getting this info. acquire the computer organization and design the hardware software interface 4th fourth edition by patterson hennessy join that we manage to pay for here and check out the link.

832 citations

Journal ArticleDOI
20 Mar 2020
TL;DR: This article reviews the mainstream compression approaches such as compact model, tensor decomposition, data quantization, and network sparsification, and answers the question of how to leverage these methods in the design of neural network accelerators and present the state-of-the-art hardware architectures.
Abstract: Domain-specific hardware is becoming a promising topic in the backdrop of improvement slow down for general-purpose processors due to the foreseeable end of Moore’s Law. Machine learning, especially deep neural networks (DNNs), has become the most dazzling domain witnessing successful applications in a wide spectrum of artificial intelligence (AI) tasks. The incomparable accuracy of DNNs is achieved by paying the cost of hungry memory consumption and high computational complexity, which greatly impedes their deployment in embedded systems. Therefore, the DNN compression concept was naturally proposed and widely used for memory saving and compute acceleration. In the past few years, a tremendous number of compression techniques have sprung up to pursue a satisfactory tradeoff between processing efficiency and application accuracy. Recently, this wave has spread to the design of neural network accelerators for gaining extremely high performance. However, the amount of related works is incredibly huge and the reported approaches are quite divergent. This research chaos motivates us to provide a comprehensive survey on the recent advances toward the goal of efficient compression and execution of DNNs without significantly compromising accuracy, involving both the high-level algorithms and their applications in hardware design. In this article, we review the mainstream compression approaches such as compact model, tensor decomposition, data quantization, and network sparsification. We explain their compression principles, evaluation metrics, sensitivity analysis, and joint-way use. Then, we answer the question of how to leverage these methods in the design of neural network accelerators and present the state-of-the-art hardware architectures. In the end, we discuss several existing issues such as fair comparison, testing workloads, automatic compression, influence on security, and framework/hardware-level support, and give promising topics in this field and the possible challenges as well. This article attempts to enable readers to quickly build up a big picture of neural network compression and acceleration, clearly evaluate various methods, and confidently get started in the right way.

499 citations

Proceedings ArticleDOI
02 Jun 2018
TL;DR: This paper describes the NPU architecture for Project Brainwave, a production-scale system for real-time AI, and achieves more than an order of magnitude improvement in latency and throughput over state-of-the-art GPUs on large RNNs at a batch size of 1.5 teraflops.
Abstract: Interactive AI-powered services require low-latency evaluation of deep neural network (DNN) models—aka ""real-time AI"". The growing demand for computationally expensive, state-of-the-art DNNs, coupled with diminishing performance gains of general-purpose architectures, has fueled an explosion of specialized Neural Processing Units (NPUs). NPUs for interactive services should satisfy two requirements: (1) execution of DNN models with low latency, high throughput, and high efficiency, and (2) flexibility to accommodate evolving state-of-the-art models (e.g., RNNs, CNNs, MLPs) without costly silicon updates. This paper describes the NPU architecture for Project Brainwave, a production-scale system for real-time AI. The Brainwave NPU achieves more than an order of magnitude improvement in latency and throughput over state-of-the-art GPUs on large RNNs at a batch size of 1. The NPU attains this performance using a single-threaded SIMD ISA paired with a distributed microarchitecture capable of dispatching over 7M operations from a single instruction. The spatially distributed microarchitecture, scaled up to 96,000 multiply-accumulate units, is supported by hierarchical instruction decoders and schedulers coupled with thousands of independently addressable high-bandwidth on-chip memories, and can transparently exploit many levels of fine-grain SIMD parallelism. When targeting an FPGA, microarchitectural parameters such as native datapaths and numerical precision can be "synthesis specialized" to models at compile time, enabling atypically high FPGA performance competitive with hardened NPUs. When running on an Intel Stratix 10 280 FPGA, the Brainwave NPU achieves performance ranging from ten to over thirty-five teraflops, with no batching, on large, memory-intensive RNNs.

498 citations

Journal ArticleDOI
01 Jul 2020
TL;DR: The development of neuro-inspired computing chips and their key benchmarking metrics are reviewed, providing a co-design tool chain and proposing a roadmap for future large-scale chips are provided and a future electronic design automation tool chain is proposed.
Abstract: The rapid development of artificial intelligence (AI) demands the rapid development of domain-specific hardware specifically designed for AI applications. Neuro-inspired computing chips integrate a range of features inspired by neurobiological systems and could provide an energy-efficient approach to AI computing workloads. Here, we review the development of neuro-inspired computing chips, including artificial neural network chips and spiking neural network chips. We propose four key metrics for benchmarking neuro-inspired computing chips — computing density, energy efficiency, computing accuracy, and on-chip learning capability — and discuss co-design principles, from the device to the algorithm level, for neuro-inspired computing chips based on non-volatile memory. We also provide a future electronic design automation tool chain and propose a roadmap for the development of large-scale neuro-inspired computing chips. This Review Article examines the development of neuro-inspired computing chips and their key benchmarking metrics, providing a co-design tool chain and proposing a roadmap for future large-scale chips.

303 citations

References
More filters
Proceedings ArticleDOI
27 Jun 2016
TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Abstract: Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learning residual functions with reference to the layer inputs, instead of learning unreferenced functions. We provide comprehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [40] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our extremely deep representations, we obtain a 28% relative improvement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1, where we also won the 1st places on the tasks of ImageNet detection, ImageNet localization, COCO detection, and COCO segmentation.

123,388 citations

Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Proceedings Article
04 Sep 2014
TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

55,235 citations


"DRISA: a DRAM-based Reconfigurable ..." refers methods in this paper

  • ...In the case study, we consider four CNN applications (including both convolution layers and fully connected layers): 8-layer AlexNet [56], 16-layer VGG-16, 19-layer VGG-19 [85], and 152-layer ResNet-152 [41]....

    [...]

  • ...Figure 13 shows our training result for AlexNet and VGG-16 [85] on ImageNet [78]....

    [...]

Proceedings Article
01 Jan 2015
TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Abstract: In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the localisation and classification tracks respectively. We also show that our representations generalise well to other datasets, where they achieve state-of-the-art results. We have made our two best-performing ConvNet models publicly available to facilitate further research on the use of deep visual representations in computer vision.

49,914 citations

Journal ArticleDOI
28 May 2015-Nature
TL;DR: Deep learning is making major advances in solving problems that have resisted the best attempts of the artificial intelligence community for many years, and will have many more successes in the near future because it requires very little engineering by hand and can easily take advantage of increases in the amount of available computation and data.
Abstract: Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech.

46,982 citations