scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Dual nature of human ACE2 glycosylation in binding to SARS-CoV-2 spike.

TL;DR: It is shown that sugars attached to the N90 site of the human receptor interfere with binding to the virus, explaining reports of increased susceptibility to infection if N90 glycosylation is lost, and the N322 glycan binds to a conserved region of the spike protein identified previously as a cryptic epitope for a neutralizing antibody.
Abstract: Binding of the spike protein of SARS-CoV-2 to the human angiotensin-converting enzyme 2 (ACE2) receptor triggers translocation of the virus into cells. Both the ACE2 receptor and the spike protein are heavily glycosylated, including at sites near their binding interface. We built fully glycosylated models of the ACE2 receptor bound to the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Using atomistic molecular dynamics (MD) simulations, we found that the glycosylation of the human ACE2 receptor contributes substantially to the binding of the virus. Interestingly, the glycans at two glycosylation sites, N90 and N322, have opposite effects on spike protein binding. The glycan at the N90 site partly covers the binding interface of the spike RBD. Therefore, this glycan can interfere with the binding of the spike protein and protect against docking of the virus to the cell. By contrast, the glycan at the N322 site interacts tightly with the RBD of the ACE2-bound spike protein and strengthens the complex. Remarkably, the N322 glycan binds to a conserved region of the spike protein identified previously as a cryptic epitope for a neutralizing antibody. By mapping the glycan binding sites, our MD simulations aid in the targeted development of neutralizing antibodies and SARS-CoV-2 fusion inhibitors.
Citations
More filters
Journal ArticleDOI
TL;DR: Further structural and functional insights are presented into the role of ACE2 in viral infection that can potentially be exploited for the rational design of effective SARS-CoV-2 therapeutics.

85 citations


Cites background or methods or result from "Dual nature of human ACE2 glycosyla..."

  • ...In agreement with other studies (48, 68), N90 and to a lesser extent N322 of ACE2 establ i h contacts with RBD....

    [...]

  • ...Fraction of native contacts was calculated according to Mehdipour and Hummer (68)....

    [...]

  • ...Experimental structures and simulations suggest that the majority of the protein contacts in the homodimer a re located in the neck domain, with only two other interactions, in the form of hydrogen bonds, are observed in the larger peptidase domain (16, 68)....

    [...]

  • ...Fraction of native contacts and glycan contacts Fraction of native contacts was calculated according to Mehdipour and Hummer (68)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors reviewed the detections, substrates, biological functions of the glycosylation in SARS-CoV-2 proteins as well as the human receptor ACE2.
Abstract: Coronavirus disease 2019 (COVID-19), a highly infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has infected more than 235 million individuals and led to more than 4.8 million deaths worldwide as of October 5 2021. Cryo-electron microscopy and topology show that the SARS-CoV-2 genome encodes lots of highly glycosylated proteins, such as spike (S), envelope (E), membrane (M), and ORF3a proteins, which are responsible for host recognition, penetration, binding, recycling and pathogenesis. Here we reviewed the detections, substrates, biological functions of the glycosylation in SARS-CoV-2 proteins as well as the human receptor ACE2, and also summarized the approved and undergoing SARS-CoV-2 therapeutics associated with glycosylation. This review may not only broad the understanding of viral glycobiology, but also provide key clues for the development of new preventive and therapeutic methodologies against SARS-CoV-2 and its variants.

70 citations

Journal ArticleDOI
21 Jan 2022-Science
TL;DR: In this article , the SARS-CoV-2 receptor binding domain (RBD) can tolerate large numbers of simultaneous antibody escape mutations and showed that pseudotypes containing up to seven mutations, as opposed to the one to three found in previously studied variants of concern, are more resistant to neutralization by therapeutic antibodies and serum from vaccine recipients.
Abstract: Many studies have examined the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants on neutralizing antibody activity after they have become dominant strains. Here, we evaluate the consequences of further viral evolution. We demonstrate mechanisms through which the SARS-CoV-2 receptor binding domain (RBD) can tolerate large numbers of simultaneous antibody escape mutations and show that pseudotypes containing up to seven mutations, as opposed to the one to three found in previously studied variants of concern, are more resistant to neutralization by therapeutic antibodies and serum from vaccine recipients. We identify an antibody that binds the RBD core to neutralize pseudotypes for all tested variants but show that the RBD can acquire an N-linked glycan to escape neutralization. Our findings portend continued emergence of escape variants as SARS-CoV-2 adapts to humans.

53 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that primary human endothelial cells express very low levels of the SARS-CoV-2 receptor ACE2 and the protease TMPRSS2, which blocks their capacity for productive viral infection, and limits their capacity to produce infectious virus.
Abstract: Objectives: Thrombotic and microvascular complications are frequently seen in deceased COVID-19 patients. However, whether this is caused by direct viral infection of the endothelium or inflammation-induced endothelial activation remains highly contentious. Methods: Here, we use patient autopsy samples, primary human endothelial cells and an in vitro model of the pulmonary epithelial-endothelial cell barrier. Results: We show that primary human endothelial cells express very low levels of the SARS-CoV-2 receptor ACE2 and the protease TMPRSS2, which blocks their capacity for productive viral infection, and limits their capacity to produce infectious virus. Accordingly, endothelial cells can only be infected when they overexpress ACE2, or are exposed to very high concentrations of SARS-CoV-2. We also show that SARS-CoV-2 does not infect endothelial cells in 3D vessels under flow conditions. We further demonstrate that in a co-culture model endothelial cells are not infected with SARS-CoV-2. Endothelial cells do however sense and respond to infection in the adjacent epithelial cells, increasing ICAM-1 expression and releasing pro-inflammatory cytokines. Conclusions: Taken together, these data suggest that in vivo, endothelial cells are unlikely to be infected with SARS-CoV-2 and that infection may only occur if the adjacent pulmonary epithelium is denuded (basolateral infection) or a high viral load is present in the blood (apical infection). In such a scenario, whilst SARS-CoV-2 infection of the endothelium can occur, it does not contribute to viral amplification. However, endothelial cells may still play a key role in SARS-CoV-2 pathogenesis by sensing adjacent infection and mounting a pro-inflammatory response to SARS-CoV-2.

51 citations

Posted ContentDOI
TL;DR: There is a direct link between increased RBD—ACE2 complex stability and the greater transmissibility observed for the variants of concern and insight into the impact of viral mutations on infection-induced immunity is provided.
Abstract: Despite an unprecedented global gain in knowledge since the emergence of SARS-CoV-2, almost all mechanistic knowledge related to the molecular and cellular details of viral replication, pathology and virulence has been generated using early prototypic isolates of SARS-CoV-2. Here, using atomic force microscopy and molecular dynamics, we investigated how these mutations quantitatively affected the kinetic, thermodynamic and structural properties of RBD-ACE2 complex formation. We observed for several variants of concern a significant increase in the RBD-ACE2 complex stability. While the N501Y and E484Q mutations are particularly important for the greater stability, the N501Y mutation is unlikely to significantly affect antibody neutralization. This work provides unprecedented atomistic detail on the binding of SARS-CoV-2 variants and provides insight into the impact of viral mutations on infection-induced immunity.

45 citations

References
More filters
Journal ArticleDOI
TL;DR: VMD is a molecular graphics program designed for the display and analysis of molecular assemblies, in particular biopolymers such as proteins and nucleic acids, which can simultaneously display any number of structures using a wide variety of rendering styles and coloring methods.

46,130 citations

Journal ArticleDOI
TL;DR: In this paper, a method is described to realize coupling to an external bath with constant temperature or pressure with adjustable time constants for the coupling, which can be easily extendable to other variables and to gradients, and can be applied also to polyatomic molecules involving internal constraints.
Abstract: In molecular dynamics (MD) simulations the need often arises to maintain such parameters as temperature or pressure rather than energy and volume, or to impose gradients for studying transport properties in nonequilibrium MD A method is described to realize coupling to an external bath with constant temperature or pressure with adjustable time constants for the coupling The method is easily extendable to other variables and to gradients, and can be applied also to polyatomic molecules involving internal constraints The influence of coupling time constants on dynamical variables is evaluated A leap‐frog algorithm is presented for the general case involving constraints with coupling to both a constant temperature and a constant pressure bath

25,256 citations

Journal ArticleDOI
TL;DR: The dynamical steady-state probability density is found in an extended phase space with variables x, p/sub x/, V, epsilon-dot, and zeta, where the x are reduced distances and the two variables epsilus-dot andZeta act as thermodynamic friction coefficients.
Abstract: Nos\'e has modified Newtonian dynamics so as to reproduce both the canonical and the isothermal-isobaric probability densities in the phase space of an N-body system. He did this by scaling time (with s) and distance (with ${V}^{1/D}$ in D dimensions) through Lagrangian equations of motion. The dynamical equations describe the evolution of these two scaling variables and their two conjugate momenta ${p}_{s}$ and ${p}_{v}$. Here we develop a slightly different set of equations, free of time scaling. We find the dynamical steady-state probability density in an extended phase space with variables x, ${p}_{x}$, V, \ensuremath{\epsilon}\ifmmode \dot{}\else \.{}\fi{}, and \ensuremath{\zeta}, where the x are reduced distances and the two variables \ensuremath{\epsilon}\ifmmode \dot{}\else \.{}\fi{} and \ensuremath{\zeta} act as thermodynamic friction coefficients. We find that these friction coefficients have Gaussian distributions. From the distributions the extent of small-system non-Newtonian behavior can be estimated. We illustrate the dynamical equations by considering their application to the simplest possible case, a one-dimensional classical harmonic oscillator.

17,939 citations

Journal ArticleDOI
03 Feb 2020-Nature
TL;DR: Identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China, and it is shown that this virus belongs to the species of SARSr-CoV, indicates that the virus is related to a bat coronav virus.
Abstract: Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats1–4. Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans5–7. Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV. Characterization of full-length genome sequences from patients infected with a new coronavirus (2019-nCoV) shows that the sequences are nearly identical and indicates that the virus is related to a bat coronavirus.

16,857 citations

Journal ArticleDOI
16 Apr 2020-Cell
TL;DR: It is demonstrated that SARS-CoV-2 uses the SARS -CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming, and it is shown that the sera from convalescent SARS patients cross-neutralized Sars-2-S-driven entry.

15,362 citations

Related Papers (5)