scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Dusty debris disks as signposts of planets: implications for spitzer space telescope

10 Mar 2004-The Astrophysical Journal (IOP Publishing)-Vol. 603, Iss: 2, pp 738-743
TL;DR: In this paper, the semimajor axes of the associated planets can be estimated from the dust temperature of the disks and rings of a distant star using the 160 μm filter.
Abstract: Submillimeter and near-infrared images of cool dusty debris disks and rings suggest the existence of unseen planets. At dusty but nonimaged stars, semimajor axes of associated planets can be estimated from the dust temperature. For some young stars these semimajor axes are greater than 1'' as seen from Earth. Such stars are excellent targets for sensitive near-infrared imaging searches for warm planets. To probe the full extent of the dust and hence of potential planetary orbits, Spitzer observations should include measurements with the 160 μm filter.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
28 Nov 2008-Science
TL;DR: High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units.
Abstract: Direct imaging of exoplanetary systems is a powerful technique that can reveal Jupiter-like planets in wide orbits, can enable detailed characterization of planetary atmospheres, and is a key step toward imaging Earth-like planets. Imaging detections are challenging because of the combined effect of small angular separation and large luminosity contrast between a planet and its host star. High-contrast observations with the Keck and Gemini telescopes have revealed three planets orbiting the star HR 8799, with projected separations of 24, 38, and 68 astronomical units. Multi-epoch data show counter clockwise orbital motion for all three imaged planets. The low luminosity of the companions and the estimated age of the system imply planetary masses between 5 and 13 times that of Jupiter. This system resembles a scaled-up version of the outer portion of our solar system.

1,966 citations

Journal ArticleDOI
TL;DR: In this article, the TW Hydrae Association, the Tucana/Horologium Association, β Pictoris Moving Group, and AB Doradus Moving Group were identified within ∼60 pc of Earth, and the η Chamaeleontis cluster was found at 97 pc.
Abstract: ▪ Abstract Until the late 1990s the rich Hyades and the sparse UMa clusters were the only coeval, comoving concentrations of stars known within 60 pc of Earth. Both are hundreds of millions of years old. Then beginning in the late 1990s the TW Hydrae Association, the Tucana/Horologium Association, the β Pictoris Moving Group, and the AB Doradus Moving Group were identified within ∼60 pc of Earth, and the η Chamaeleontis cluster was found at 97 pc. These young groups (ages 8–50 Myr), along with other nearby, young stars, will enable imaging and spectroscopic studies of the origin and early evolution of planetary systems.

696 citations

Journal ArticleDOI
TL;DR: The results of the Gemini Deep Planet Survey as mentioned in this paper were obtained with the Altair adaptive optics system at the Gemini North telescope, and angular differential imaging was used to suppress the speckle noise of the central star.
Abstract: We present the results of the Gemini Deep Planet Survey, a near-infrared adaptive optics search for giant planets and brown dwarfs around 85 nearby young stars. The observations were obtained with the Altair adaptive optics system at the Gemini North telescope, and angular differential imaging was used to suppress the speckle noise of the central star. Typically, the observations are sensitive to angular separations beyond 0.5'' with 5 σ contrast sensitivities in magnitude difference at 1.6 μm of 9.5 at 0.5'', 12.9 at 1'', 15.0 at 2'', and 16.5 at 5''. These sensitivities are sufficient to detect planets more massive than 2 MJ with a projected separation in the range 40-200 AU around a typical target. Second-epoch observations of 48 stars with candidates (out of 54) have confirmed that all candidates are unrelated background stars. A detailed statistical analysis of the survey results is presented. Assuming a planet mass distribution dn/dm ∝ m-1.2 and a semimajor-axis distribution dn/da ∝ a-1, the 95% credible upper limits on the fraction of stars with at least one planet of mass 0.5-13 MJ are 0.28 for the range 10-25 AU, 0.13 for 25-50 AU, and 0.093 for 50-250 AU; this result is weakly dependent on the semimajor-axis distribution power-law index. The 95% credible interval for the fraction of stars with at least one brown dwarf companion having a semimajor axis in the range 25-250 AU is 0.019, irrespective of any assumption on the mass and semimajor-axis distributions. The observations made as part of this survey have resolved the stars HD 14802, HD 166181, and HD 213845 into binaries for the first time.

362 citations

Journal ArticleDOI
TL;DR: In this article, the authors obtained Spitzer Space Telescope Infrared Spectrograph (IRS) 5.5-35 μm spectra of 59 main-sequence stars that possess IRAS 60 μm excess.
Abstract: We have obtained Spitzer Space Telescope Infrared Spectrograph (IRS) 5.5-35 μm spectra of 59 main-sequence stars that possess IRAS 60 μm excess. The spectra of five objects possess spectral features that are well-modeled using micron-sized grains and silicates with crystalline mass fractions 0%-80%, consistent with T Tauri and Herbig AeBe stars. With the exception of η Crv, these objects are young with ages ≤50 Myr. Our fits require the presence of a cool blackbody continuum, Tgr = 80-200 K, in addition to hot, amorphous, and crystalline silicates, Tgr = 290-600 K, suggesting that multiple parent body belts are present in some debris disks, analogous to the asteroid and Kuiper belts in our solar system. The spectra for the majority of objects are featureless, suggesting that the emitting grains probably have radii a > 10 μm. We have modeled the excess continua using a continuous disk with a uniform surface density distribution, expected if Poynting-Robertson and stellar wind drag are the dominant grain removal processes, and using a single-temperature blackbody, expected if the dust is located in a narrow ring around the star. The IRS spectra of many objects are better modeled with a single-temperature blackbody, suggesting that the disks possess inner holes. The distribution of grain temperatures, based on our blackbody fits, peaks at Tgr = 110-120 K. Since the timescale for ice sublimation of micron-sized grains with Tgr > 110 K is a fraction of a Myr, the lack of warmer material may be explained if the grains are icy. If planets dynamically clear the central portions of debris disks, then the frequency of planets around other stars is probably high. We estimate that the majority of debris disk systems possess parent body masses, MPB < 1 M⊕. The low inferred parent body masses suggest that planet formation is an efficient process.

313 citations

Journal ArticleDOI
TL;DR: In this paper, the mass, dimensions, and evolution of dusty debris disks around main-sequence stars were investigated using the IRAS catalog, and the authors identified 146 stars within 120 pc of Earth that show excess emission at 60 μm.
Abstract: Dusty debris disks around main-sequence stars are signposts for the existence of planetesimals and exoplanets. From cross-correlating Hipparcos stars with the IRAS catalogs, we identify 146 stars within 120 pc of Earth that show excess emission at 60 μm. This search took special precautions to avoid false positives. Our sample is reasonably well distributed from late B to early K-type stars, but it contains very few later type stars. Even though IRAS flew more than 20 years ago and many astronomers have cross-correlated its catalogs with stellar catalogs, we were still able to newly identify debris disks at as many as 33 main-sequence stars; of these, 32 are within 100 pc of Earth. The power of an all-sky survey satellite like IRAS is evident when comparing our 33 new debris disks with the total of only 22 dusty debris disk stars first detected with the more sensitive, but pointed, satellite ISO. Our investigation focuses on the mass, dimensions, and evolution of dusty debris disks.

285 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors report the identification of 17 star systems, each with one or more characteristics indicative of extreme youth, that are moving through space together with β Pictoris.
Abstract: Following the 1983 IRAS detection and subsequent imaging of its extensive dusty circumstellar disk, β Pictoris became the prototypical and most studied example of a potential forming planetary system. Here we report the identification of 17 star systems, each with one or more characteristics indicative of extreme youth, that are moving through space together with β Pic. This diverse set of ~12 million yr old star systems, which includes a ~35 Jupiter mass brown dwarf, and a wide assortment of dusty circumstellar disks, is the comoving, youthful group closest to Earth. Their unique combination of youth and proximity to Earth makes group members—many of which have masses similar to that of the Sun—prime candidates for imaging of warm planets and dusty circumstellar disks with ground- and space-based telescopes.

500 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the extension of the NextGen model atmosphere grid to the regime of giant stars and discuss the effects of spherical geometry on the structure of the atmospheres and the emitted spectra.
Abstract: We present the extension of our NextGen model atmosphere grid to the regime of giant stars. The input physics of the models presented here is nearly identical to that of the NextGen dwarf atmosphere models; however, spherical geometry is used self-consistently in the model calculations (including the radiative transfer). We revisit the discussion of the effects of spherical geometry on the structure of the atmospheres and the emitted spectra and discuss the results of non-LTE calculations for a few selected models.

474 citations

Journal ArticleDOI
23 Apr 1998-Nature
TL;DR: In this paper, the presence of the central cavity, approximately the size of Neptune's orbit, was detected in the emission from Fomalhaut, beta Pictoris and Vega, which may be the signature of Earth-like planets.
Abstract: Indirect detections of massive — presumably Jupiter-like — planets orbiting nearby Sun-like stars have recently been reported1,2. Rocky, Earth-like planets are much more difficult to detect, but clues to their possible existence can nevertheless be obtained from observations of the circumstellar debris disks of dust from which they form. The presence of such disks has been inferred3 from excess far-infrared emission but, with the exception of beta Pictoris4, it has proved difficult to image these structures directly as starlight dominates the faint light scattered by the dust5. A more promising approach is to attempt to image the thermal emission from the dust grains at submillimetre wavelengths6,7. Here we present images of such emission around Fomalhaut, beta Pictoris and Vega. For each star, dust emission is detected from regions comparable in size to the Sun's Kuiper belt of comets. The total dust mass surrounding each star is only a few lunar masses, so any Earth-like planets present must already have formed. The presence of the central cavity, approximately the size of Neptune's orbit, that we detect in the emission from Fomalhaut may indeed be the signature of such planets.

459 citations

Journal ArticleDOI
09 Feb 1995-Nature
TL;DR: Observations of the molecular gas surrounding 20 stars whose ages are likely to be in this range are reported, finding that the gas dissipates rapidly; after a few million years the mass remaining is typically much less than the mass of Jupiter.
Abstract: Although stars form from clouds of gas and dust, there are insignificant amounts of gas around ordinary (Sun-like) stars. This suggests that hydrogen and helium, the primary constituents of planets such as Jupiter and Saturn, are not easily retained in orbit as a star matures. The gas-giant planets in the Solar System must therefore have formed rapidly. Models of their formation generally suggest that a solid core formed in < or = 10(6) yr, followed by the accretion of the massive gaseous envelope in approximately 10(7) yr (refs 1-5). But how and when the gas of the solar nebula dissipated, and how this compares with the predicted timescale of gas-giant formation, remains unclear, in part because direct observations of circumstellar gas have been made only for stars either younger or older than the critical range of 10(6)-10(7) yr (refs 8-15). Here we report observations of the molecular gas surrounding 20 stars whose ages are likely to be in this range. The gas dissipates rapidly; after a few million years the mass remaining is typically much less than the mass of Jupiter. Thus, if gas-giant planets are common in the Galaxy, they must form even more quickly than present models suggest.

386 citations

Journal ArticleDOI
TL;DR: In this article, a new submillimeter camera was used to image the nearby star epsilon Eridani, where a ring of dust is seen peaking at 60 AU from the star and with much lower emission inside 30 AU, and the total mass of the ring is at least ~0.01 M⊕ in dust.
Abstract: Dust emission around the nearby star epsilon Eridani has been imaged using a new submillimeter camera (the Submillimetre Common-User Bolometer Array at the James Clerk Maxwell Telescope). At an 850 μm wavelength, a ring of dust is seen peaking at 60 AU from the star and with much lower emission inside 30 AU. The mass of the ring is at least ~0.01 M⊕ in dust, while an upper limit of 0.4 M⊕ in molecular gas is imposed by CO observations. The total mass is comparable to the estimated amount of material, 0.04-0.3 M⊕, in comets orbiting the solar system. The most probable origin of the ring structure is that it is a young analog to the Kuiper Belt in our solar system and that the central region has been partially cleared by the formation of grains into planetesimals. Dust clearing around epsilon Eri is seen within the radius of Neptune's orbit, and the peak emission at 35-75 AU lies within the estimated Kuiper Belt zone of 30-100 AU radius. epsilon Eri is a main-sequence star of type K2 V (0.8 Modot) with an estimated age of 0.5-1.0 Gyr, so this interpretation is consistent with the early history of the solar system where heavy bombardment occurred up to ≈ 0.6 Gyr. An unexpected discovery is the substructure within the ring, and these asymmetries could be due to perturbations by planets.

338 citations