scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Dynamic characterization of a laminated composite magnetorheological fluid sandwich plate

09 Jan 2014-Smart Materials and Structures (IOP Publishing)-Vol. 23, Iss: 2, pp 025022
TL;DR: In this article, the authors investigated the effect of a magnetic field on the variation of the natural frequencies and loss factors of a laminated composite magnetorheological (MR) fluid sandwich plate under various boundary conditions.
Abstract: This study investigates the dynamic properties of a laminated composite magnetorheological (MR) fluid sandwich plate. The governing differential equations of motion of a sandwich plate embedding a MR fluid layer as the core layer and laminated composite plates as the face layers are presented in a finite element formulation. The validity of the developed finite element formulation is demonstrated by comparing the results in terms of the natural frequencies derived from the present finite element formulation with those in the available literature. Various parametric studies are also performed to investigate the effect of a magnetic field on the variation of the natural frequencies and loss factors of the MR fluid composite sandwich plate under various boundary conditions. Furthermore, the effect of the thickness of the MR fluid layer and the ply orientation of the composite face layers on the variation of the natural frequencies and loss factors are studied. The free vibration mode shapes under various boundary conditions of a MR fluid laminated composite sandwich plate are also presented. The forced vibration response of a MR fluid composite plate is investigated to study the dynamic response of the sandwich plate under harmonic force excitations in various magnetic fields. The study suggests that the natural frequency increases with increasing magnetic field, irrespective of the boundary conditions. The reduction in peak deflection at each mode under a harmonic excitation force with variation of the applied magnetic field shows the effectiveness of the MR fluid layer in reducing the vibration amplitude of the composite sandwich plate.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the dynamic buckling analysis of sandwich plates with magnetorheological (MR) fluid core and piezoelectric nanocomposite facesheets is presented.

51 citations

Journal ArticleDOI
TL;DR: In this paper, the vibration responses of a partially treated composite magnetorheological (MR) fluid sandwich plate have been investigated and the governing differential equations of motion have been analyzed.
Abstract: In this study, the vibration responses of a partially treated laminated composite magnetorheological (MR) fluid sandwich plate have been investigated. The governing differential equations of motion...

44 citations


Cites background from "Dynamic characterization of a lamin..."

  • ...A partially treated MR fluid sandwich plate structure (Figure 1(d)) can be modeled on the basis of a fully treated MR fluid sandwich plate (Figure 1 (b)) (Manoharan et al. 2014)....

    [...]

  • ...The dynamic properties of a laminated composite MR fluid sandwich plate were investigated recently by Manoharan et al. (2014)....

    [...]

Journal ArticleDOI
TL;DR: In this article, a three-layered sandwich beam with an adaptive magneto-rheological fluid (MRF) core layer is investigated, and the authors derived the instability bounds based on the classical beam theory for the face layers, magnetic field dependent complex modulus approach for viscoelastic material model and the linear first-order piston theory for aerodynamic pressure.

35 citations

Journal ArticleDOI
TL;DR: In this article, the optimal locations of magnetorheological elastomer (MRE) segments in partially treated tapered composite MRE sandwich plates to maximize the natural frequencies and the loss factors were investigated.

34 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed a sandwich structure formed by embedding magnetorheological elastomers (MRE) between constrained layers of carbon fibre-reinforced plastic (CFRP) laminates.
Abstract: The aim of this work was the development of sandwich structures formed by embedding magnetorheological elastomers (MRE) between constrained layers of carbon fibre–reinforced plastic (CFRP) laminates. The MREs were obtained by mechanical stirring of a reactive mixture of substrates with carbonyl-iron particles, followed by orienting the particles into chains under an external magnetic field. Samples with particle volume fractions of 11.5% and 33% were examined. The CFRP/MRE sandwich structures were obtained by compressing MREs samples between two CFRP laminates composed. The used A.S.SET resin was in powder form and the curing process was carried out during pressing with MRE. The microstructure of the manufactured sandwich beams was inspected using SEM. Moreover, the rheological and damping properties of the examined materials with and without a magnetic field were experimentally investigated. In addition, the free vibration responses of the adaptive three-layered MR beams were studied at different fixed magnetic field levels. The free vibration tests revealed that an applied non-homogeneous magnetic field causes a shift in natural frequency values and a reduction in the vibration amplitudes of the CFRP/MRE adaptive beams. The reduction in vibration amplitude was attributed mainly to the stiffening effect of the MRE core and only a minor contribution was made by the enhanced damping capacity, which was evidenced by the variation in damping ratio values.

34 citations

References
More filters
Patent
31 Oct 1947

198 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed analysis of vibration control capabilities of adaptive structures based on magnetorheological and electrorheological (ER) materials is presented. And the relative performances of both MR and ER adaptive beams are discussed in detail and their advantages and disadvantages are listed.
Abstract: Magnetorheological (MR) and electrorheological (ER) materials show variations in their rheological properties when subjected to varying magnetic and electric fields, respectively. They have quick time response, in the order of milliseconds, and thus are potentially applicable to structures and devices when a tunable system response is required. When incorporated into an adaptive structural system, they can yield higher variations in the dynamic response of the structure. This study presents a detailed analysis of vibration control capabilities of adaptive structures based on MR and ER materials, and compares their vibration minimization rates, time responses and energy consumption rates. Homogeneous one-dimensional MR and ER adaptive beam configurations were considered. A structural dynamic modeling approach was discussed and vibration characteristics of MR and ER adaptive beams were predicted for different magnetic and electric field levels. In addition to the model predictions, actual MR and ER adaptive beams were fabricated and tested. Both studies illustrated the vibration minimization capabilities of the MR and ER adaptive beams at different rates and environmental conditions. The relative performances of both MR and ER adaptive beams were discussed in detail and their advantages and disadvantages were listed.

167 citations

Journal ArticleDOI
TL;DR: In this paper, the relationship between the magnetic field and the complex shear modulus of MR materials in the pre-yield regime is investigated using oscillatory rheometry techniques.

165 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the vibration suppression capabilities of magnetorheological (MR) materials in adaptive structures by varying the externally applied magnetic field level over the MR layer, the stiffness and damping properties of the adaptive beam can be varied.
Abstract: This paper discusses the investigation of vibration suppression capabilities of magnetorheological (MR) materials in adaptive structures. Homogeneous three-layered adaptive beams with MR materials sandwiched between two elastic layers were considered. By varying the externally applied magnetic field level over the MR layer, the stiffness and damping properties of the adaptive beam can be varied. These variations in the damping and stiffness properties can be used to tune the vibration characteristics of the adaptive beams such as natural frequencies, vibration amplitudes, mode shapes and loss factors. In this study, theoretical investigation of the MR adaptive beams vibration behavior based on the energy approach is accomplished. Experiments were performed to observe the theoretically predicted vibration responses in real time. From both studies, vibration suppression capabilities of MR adaptive beams were observed in the forms of shifts in natural frequency values, variations in loss factors, and vibration amplitudes.

159 citations