scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Dynamic Energy Management of Renewable Grid Integrated Hybrid Energy Storage System

TL;DR: A unified energy management scheme is proposed for renewable grid integrated systems with battery-supercapacitor hybrid storage that enables the real power transfer along with ancillary services such as current harmonic mitigation, reactive power support, and power factor improvement at the point of common coupling.
Abstract: In this paper, a unified energy management scheme is proposed for renewable grid integrated systems with battery–supercapacitor hybrid storage. The intermittent nature of renewable-energy resources (RES), coupled with the unpredictable changes in the load, demands high-power and high-energy-density storage systems to coexist in today's microgrid environment. The proposed scheme dynamically changes the modes of renewable integrated systems based on the availability of RES power and changes in load as well. The participation of battery–supercapacitor storage to handle sudden/average changes in power surges results in fast dc link voltage regulation, effective energy management, and reduced current stress on battery. In addition, the proposed energy management scheme enables the real power transfer along with ancillary services such as current harmonic mitigation, reactive power support, and power factor improvement at the point of common coupling. The proposed scheme is validated through both simulation and experimental studies.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a review of the state-of-the-art models for electrical, self-discharge, and thermal behaviors of supercapacitors is presented, where electrochemical, equivalent circuit, intelligent, and fractional-order models are highlighted.
Abstract: Supercapacitors (SCs) have high power density and exceptional durability. Progress has been made in their materials and chemistries, while extensive research has been carried out to address challenges of SC management. The potential engineering applications of SCs are being continually explored. This paper presents a review of SC modeling, state estimation, and industrial applications reported in the literature, with the overarching goal to summarize recent research progress and stimulate innovative thoughts for SC control/management. For SC modeling, the state-of-the-art models for electrical, self-discharge, and thermal behaviors are systematically reviewed, where electrochemical, equivalent circuit, intelligent, and fractional-order models for electrical behavior simulation are highlighted. For SC state estimation, methods for State-of-Charge (SOC) estimation and State-of-Health (SOH) monitoring are covered, together with an underlying analysis of aging mechanism and its influencing factors. Finally, a wide range of potential SC applications is summarized. Particularly, co-working with high energy-density devices constitutes hybrid energy storage for renewable energy systems and electric vehicles (EVs), sufficiently reaping synergistic benefits of multiple energy-storage units.

567 citations

Journal ArticleDOI
TL;DR: This paper comprehensively reviews the state of the art of HESSs system for MG applications and presents a general outlook of developing HESS industry.
Abstract: Energy storages introduce many advantages such as balancing generation and demand, power quality improvement, smoothing the renewable resource’s intermittency, and enabling ancillary services like frequency and voltage regulation in microgrid (MG) operation. Hybrid energy storage systems (HESSs) characterized by coupling of two or more energy storage technologies are emerged as a solution to achieve the desired performance by combining the appropriate features of different technologies. A single ESS technology cannot fulfill the desired operation due to its limited capability and potency in terms of lifespan, cost, energy and power density, and dynamic response. Hence, different configurations of HESSs considering storage type, interface, control method, and the provided service have been proposed in the literature. This paper comprehensively reviews the state of the art of HESSs system for MG applications and presents a general outlook of developing HESS industry. Important aspects of HESS utilization in MGs including capacity sizing methods, power converter topologies for HESS interface, architecture, controlling, and energy management of HESS in MGs are reviewed and classified. An economic analysis along with design methodology is also included to point out the HESS from investor and distribution systems engineers view. Regarding literature review and available shortcomings, future trends of HESS in MGs are proposed.

327 citations


Cites methods from "Dynamic Energy Management of Renewa..."

  • ...In some researches, battery-SC are used for dc bus regulation improvement in grid-connected mode [69,70]....

    [...]

Journal ArticleDOI
TL;DR: An extended droop control (EDC) strategy to achieve dynamic current sharing autonomously during sudden load change and resource variations for hybrid energy storage system is proposed.
Abstract: Power allocation is a major concern in hybrid energy storage system. This paper proposes an extended droop control (EDC) strategy to achieve dynamic current sharing autonomously during sudden load change and resource variations. The proposed method consists of a virtual resistance droop controller and a virtual capacitance droop controller for energy storages with complementary characteristics, such as battery and supercapacitor (SC). By using this method, battery provides consistent power and SC only compensates high-frequency fluctuations without the involvement of conventionally used centralized controllers. To implement the proposed EDC method, a detailed design procedure is proposed to achieve the control objectives of stable operation, voltage regulation, and dynamic current sharing. System dynamic model and relevant impedances are derived and detailed frequency domain analysis is performed. Moreover, the system level stability analysis is investigated and system expansion with the proposed method is illustrated. Both simulations and experiments are conducted to validate the effectiveness of the proposed control strategy and analytical results.

255 citations


Cites background from "Dynamic Energy Management of Renewa..."

  • ...Considering different dynamics of ESs, power sharing based on different frequency ranges is required....

    [...]

  • ...ESs are widely used in autonomous dc MG to increase power quality, stability, and reliability [7], [8]....

    [...]

  • ...Different ESs have different energy density, power density, response time, life cycle, etc. [8]....

    [...]

  • ...As most DERs, ESs and loads are dc inherent, dc MG is gaining increasing attention [3]–[6]....

    [...]

  • ...Digital Object Identifier 10.1109/TIE.2016.2608880 storages (ESs), and a cluster of loads [1], [2]....

    [...]

Journal ArticleDOI
TL;DR: A hybrid optimization algorithm for energy storage management is proposed, which shifts its mode of operation between the deterministic and rule-based approaches depending on the electricity price band allocation.
Abstract: Electric vehicle (EV) charging stations will play an important role in the smart city. Uncoordinated and statistical EV charging loads would further stress the distribution system. Photovoltaic (PV) systems, which can reduce this stress, also show variation due to weather conditions. In this paper, a hybrid optimization algorithm for energy storage management is proposed, which shifts its mode of operation between the deterministic and rule-based approaches depending on the electricity price band allocation. The cost degradation model of the energy storage system (ESS) along with the levelized cost of PV power is used in the case of EV charging stations. The algorithm comprises of three parts: categorization of real-time electricity price in different price bands, real-time calculation of PV power from solar irradiation data, and optimization for minimizing the operating cost of EV charging station integrated with PV and ESS. An extensive simulation study is carried out with an uncoordinated and statistical EV charging model in the context of Singapore to check effectiveness of this algorithm. Furthermore, detailed analysis of subsidy and incentive to be given by the government agencies for higher penetration of renewable energy is also presented. This work would aid in planning of adoption of PV-integrated EV charging stations, which would expectedly replace traditional gas stations in future.

251 citations


Cites background from "Dynamic Energy Management of Renewa..."

  • ...[9], increasing the reliability of power supply [10], and reducing the cost of power purchased from the electricity market [11]....

    [...]

Journal ArticleDOI
TL;DR: This study reviews and discusses the technological advancements and developments of battery-supercapacitor based HESS in standalone micro-grid system, and the system topology and the energy management and control strategies are compared.
Abstract: Global energy challenges have driven the adoption of renewable energy sources. Usually, an intelligent energy and battery management system is deployed to harness the renewable energy sources efficiently, whilst maintaining the reliability and robustness of the power system. In recent years, the battery-supercapacitor based hybrid energy storage system (HESS) has been proposed to mitigate the impact of dynamic power exchanges on battery's lifespan. This study reviews and discusses the technological advancements and developments of battery-supercapacitor based HESS in standalone micro-grid system. The system topology and the energy management and control strategies are compared. The study also discusses the technical complexity and economic sustainability of a standalone micro-grid system. A case study of a standalone photovoltaic-based micro-grid with HESS is presented.

240 citations

References
More filters
Book
21 Feb 2011
TL;DR: In this article, the authors present an overview of the Grid Converter and its application in photovoltaic (PV) power converters, including the following: 1.1 Introduction. 2.3 Inverter Structures Derived from H-Bridge Topology. 3.4 Power Quality. 4.5 Adaptive Filtering.
Abstract: About the Authors. Preface. Acknowledgements. 1 Introduction. 1.1 Wind Power Development. 1.2 Photovoltaic Power Development. 1.3 The Grid Converter The Key Element in Grid Integration of WT and PV Systems. 2 Photovoltaic Inverter Structures. 2.1 Introduction. 2.2 Inverter Structures Derived from H-Bridge Topology. 2.3 Inverter Structures Derived from NPC Topology. 2.4 Typical PV Inverter Structures. 2.5 Three-Phase PV Inverters. 2.6 Control Structures. 2.7 Conclusions and Future Trends. 3 Grid Requirements for PV. 3.1 Introduction. 3.2 International Regulations. 3.3 Response to Abnormal Grid Conditions. 3.4 Power Quality. 3.5 Anti-islanding Requirements. 3.6 Summary. 4 Grid Synchronization in Single-Phase Power Converters. 4.1 Introduction. 4.2 Grid Synchronization Techniques for Single-Phase Systems. 4.3 Phase Detection Based on In-Quadrature Signals. 4.4 Some PLLs Based on In-Quadrature Signal Generation. 4.5 Some PLLs Based on Adaptive Filtering. 4.6 The SOGI Frequency-Locked Loop. 4.7 Summary. 5 Islanding Detection. 5.1 Introduction. 5.2 Nondetection Zone. 5.3 Overview of Islanding Detection Methods. 5.4 Passive Islanding Detection Methods. 5.5 Active Islanding Detection Methods. 5.6 Summary. 6 Grid Converter Structures forWind Turbine Systems. 6.1 Introduction. 6.2 WTS Power Configurations. 6.3 Grid Power Converter Topologies. 6.4 WTS Control. 6.5 Summary. 7 Grid Requirements for WT Systems. 7.1 Introduction. 7.2 Grid Code Evolution. 7.3 Frequency and Voltage Deviation under Normal Operation. 7.4 Active Power Control in Normal Operation. 7.5 Reactive Power Control in Normal Operation. 7.6 Behaviour under Grid Disturbances. 7.7 Discussion of Harmonization of Grid Codes. 7.8 Future Trends. 7.9 Summary. 8 Grid Synchronization in Three-Phase Power Converters. 8.1 Introduction. 8.2 The Three-Phase Voltage Vector under Grid Faults. 8.3 The Synchronous Reference Frame PLL under Unbalanced and Distorted Grid Conditions. 8.4 The Decoupled Double Synchronous Reference Frame PLL (DDSRF-PLL). 8.5 The Double Second-Order Generalized Integrator FLL (DSOGI-FLL). 8.6 Summary. 9 Grid Converter Control for WTS. 9.1 Introduction. 9.2 Model of the Converter. 9.3 AC Voltage and DC Voltage Control. 9.4 Voltage Oriented Control and Direct Power Control. 9.5 Stand-alone, Micro-grid, Droop Control and Grid Supporting. 9.6 Summary. 10 Control of Grid Converters under Grid Faults. 10.1 Introduction. 10.2 Overview of Control Techniques for Grid-Connected Converters under Unbalanced Grid Voltage Conditions. 10.3 Control Structures for Unbalanced Current Injection. 10.4 Power Control under Unbalanced Grid Conditions. 10.5 Flexible Power Control with Current Limitation. 10.6 Summary. 11 Grid Filter Design. 11.1 Introduction. 11.2 Filter Topologies. 11.3 Design Considerations. 11.4 Practical Examples of LCL Filters and Grid Interactions. 11.5 Resonance Problem and Damping Solutions. 11.6 Nonlinear Behaviour of the Filter. 11.7 Summary. 12 Grid Current Control. 12.1 Introduction. 12.2 Current Harmonic Requirements. 12.3 Linear Current Control with Separated Modulation. 12.4 Modulation Techniques. 12.5 Operating Limits of the Current-Controlled Converter. 12.6 Practical Example. 12.7 Summary. Appendix A Space Vector Transformations of Three-Phase Systems. A.1 Introduction. A.2 Symmetrical Components in the Frequency Domain. A.3 Symmetrical Components in the Time Domain. A.4 Components 0 on the Stationary Reference Frame. A.5 Components dq0 on the Synchronous Reference Frame. Appendix B Instantaneous Power Theories. B.1 Introduction. B.2 Origin of Power Definitions at the Time Domain for Single-Phase Systems. B.3 Origin of Active Currents in Multiphase Systems. B.4 Instantaneous Calculation of Power Currents in Multiphase Systems. B.5 The p-q Theory. B.6 Generalization of the p-q Theory to Arbitrary Multiphase Systems. B.7 The Modified p-q Theory. B.8 Generalized Instantaneous Reactive Power Theory for Three-Phase Power Systems. B.9 Summary. Appendix C Resonant Controller. C.1 Introduction. C.2 Internal Model Principle. C.3 Equivalence of the PI Controller in the dq Frame and the P+Resonant Controller in the Frame. Index.

2,509 citations

Journal ArticleDOI
TL;DR: A determinist energy management system for a microgrid, including advanced PV generators with embedded storage units and a gas microturbine is proposed, which is implemented in two parts: a central energy management of the microgrid and a local power management at the customer side.
Abstract: The development of energy management tools for next-generation PhotoVoltaic (PV) installations, including storage units, provides flexibility to distribution system operators. In this paper, the aggregation and implementation of these determinist energy management methods for business customers in a microgrid power system are presented. This paper proposes a determinist energy management system for a microgrid, including advanced PV generators with embedded storage units and a gas microturbine. The system is organized according to different functions and is implemented in two parts: a central energy management of the microgrid and a local power management at the customer side. The power planning is designed according to the prediction for PV power production and the load forecasting. The central and local management systems exchange data and order through a communication network. According to received grid power references, additional functions are also designed to manage locally the power flows between the various sources. Application to the case of a hybrid supercapacitor battery-based PV active generator is presented.

905 citations

Journal ArticleDOI
TL;DR: In this article, the performance of a battery-ultracapacitor hybrid power source under pulsed load conditions is analyzed using simplified models, and the authors show that peak power can be greatly enhanced, internal losses can be considerably reduced, and that discharge life of the battery is extended.
Abstract: The performance of a battery-ultracapacitor hybrid power source under pulsed load conditions is analytically described using simplified models. We show that peak power can be greatly enhanced, internal losses can be considerably reduced, and that discharge life of the battery is extended. Greatest benefits are seen when the load pulse rate is higher than the system eigenfrequency and when the pulse duty is small. Actual benefits are substantial; adding a 23 F ultracapacitor bank (3 /spl times/ 7 PC10 ultracapacitors) in parallel with a typical Li-ion battery of 7.2 V and 1.35 A hr capacity can boost the peak power capacity by 5 times and reduce the power loss by 74%, while minimally impacting system volume and weight, for pulsed loads of 5 A, 1 Hz repetition rate, and 10% duty.

487 citations


"Dynamic Energy Management of Renewa..." refers background in this paper

  • ...2455063 battery current to the supercapacitor units [4]....

    [...]

  • ...However, batteries have low power densities to meet the required power capabilities [4], [5]....

    [...]

Journal ArticleDOI
TL;DR: The results showed a significant cost reduction when AES configurations are included in contrast to a system powered by fuel cells only, and the cost reduction was higher when using ultracapacitors for this purpose.
Abstract: In the search for better efficiency, an auxiliary energy system (AES) for electric vehicles (EVs) was designed, implemented, and tested. The system, which is composed of an ultracapacitor bank and a buck-boost converter, was installed in an EV, which is powered by a lead-acid battery pack and a 54-kW brushless dc motor. Two control strategies where developed: one based on heuristics and the other based on an optimization model using neural networks. These strategies were translated to algorithms and implemented in a digital signal processor, and their performance was evaluated in urban driving. The results were incorporated to an economic evaluation of the system, which shows that the reduction in costs would only justify the inclusion of this type of system in a lead-acid battery-powered vehicle if the battery life is extended by 50% or more, which is unlikely. The same results were extrapolated to a case in which the lead-acid batteries are replaced by a fuel cell. In this case, the costs of different power support systems were evaluated, such as ultracapacitors and high-specific-power lithium-based batteries. The results showed a significant cost reduction when AES configurations are included in contrast to a system powered by fuel cells only. Also, the cost reduction was higher when using ultracapacitors for this purpose.

475 citations


"Dynamic Energy Management of Renewa..." refers background in this paper

  • ...microgrid systems [6]–[13], in hybrid electric vehicle applications [14], [15], and in UPS applications [16]....

    [...]

  • ...In [14], a battery–supercapacitor hybrid...

    [...]

Journal ArticleDOI
TL;DR: The paper presents two systematic methods to design the control parameters of a typical MAF-based PLL: one for the case of using a proportional-integral (PI) type loop filter (LF) in the PLL, and the other for the cases of using an proportional-Integral-derivative (PID) type LF.
Abstract: The phase-locked loops (PLLs) are probably the most widely used synchronization technique in grid-connected applications. The main challenge that is associated with the PLLs is how to precisely and fast estimate the phase and frequency, when the grid voltage is unbalanced and/or distorted. To overcome this challenge, incorporating moving average filter(s) (MAF) into the PLL structure has been proposed in some recent literature. An MAF is a linear-phase finite-impulse-response filter, which can act as an ideal low-pass filter, if certain conditions hold. The main aim of this paper is to present the control design guidelines for a typical MAF-based PLL. The paper starts with the general description of MAFs. The main challenge associated with using the MAFs is then explained, and its possible solutions are discussed. The paper then proceeds with a brief overview of the different MAF-based PLLs. In each case, the PLL block diagram description is shown, the advantages and limitations are briefly discussed, and the tuning approach (if available) is evaluated. The paper then presents two systematic methods to design the control parameters of a typical MAF-based PLL: one for the case of using a proportional-integral (PI) type loop filter (LF) in the PLL, and the other for the case of using a proportional-integral-derivative (PID) type LF. Finally, the paper compares the performance of a well-tuned MAF-based PLL when using the PI-type LF with the results of using the PID-type LF, which provides useful insights into their capabilities and limitations.

441 citations


Additional excerpts

  • ...2, MAF represents moving average filter [22]....

    [...]