scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Dynamic regulatory interactions of rad51, rad52, and replication protein-a in recombination intermediates.

03 Jul 2009-Journal of Molecular Biology (J Mol Biol)-Vol. 390, Iss: 1, pp 45-55
TL;DR: These results suggest a regulatory role for Rad51 that suppresses ssDNA annealing and facilitates DNA strand invasion, where Rad51-double-stranded DNA may inhibit illegitimate second-end capture to ensure the error-free repair of a DNA double-strand break.
About: This article is published in Journal of Molecular Biology.The article was published on 2009-07-03. It has received 49 citations till now. The article focuses on the topics: Replication protein A & Strand invasion.
Citations
More filters
Journal ArticleDOI
03 Feb 2014-PLOS ONE
TL;DR: The results reveal an unanticipated exchange between bound and free RPA suggesting a binding mechanism that can confer exceptionally slow off rates, yet also enables rapid displacement through a direct exchange mechanism that is reliant upon the presence of free ssDNA-binding proteins in solution.
Abstract: Replication protein A (RPA) is a ubiquitous eukaryotic single-stranded DNA (ssDNA) binding protein necessary for all aspects of DNA metabolism involving an ssDNA intermediate, including DNA replication, repair, recombination, DNA damage response and checkpoint activation, and telomere maintenance [1], [2], [3]. The role of RPA in most of these reactions is to protect the ssDNA until it can be delivered to downstream enzymes. Therefore a crucial feature of RPA is that it must bind very tightly to ssDNA, but must also be easily displaced from ssDNA to allow other proteins to gain access to the substrate. Here we use total internal reflection fluorescence microscopy and nanofabricated DNA curtains to visualize the behavior of Saccharomyces cerevisiae RPA on individual strands of ssDNA in real-time. Our results show that RPA remains bound to ssDNA for long periods of time when free protein is absent from solution. In contrast, RPA rapidly dissociates from ssDNA when free RPA is present in solution allowing rapid exchange between the free and bound states. In addition, the S. cerevisiae DNA recombinase Rad51 and E. coli single-stranded binding protein (SSB) also promote removal of RPA from ssDNA. These results reveal an unanticipated exchange between bound and free RPA suggesting a binding mechanism that can confer exceptionally slow off rates, yet also enables rapid displacement through a direct exchange mechanism that is reliant upon the presence of free ssDNA-binding proteins in solution. Our results indicate that RPA undergoes constant microscopic dissociation under all conditions, but this is only manifested as macroscopic dissociation (i.e. exchange) when free proteins are present in solution, and this effect is due to mass action. We propose that the dissociation of RPA from ssDNA involves a partially dissociated intermediate, which exposes a small section of ssDNA allowing other proteins to access to the DNA.

203 citations


Cites background from "Dynamic regulatory interactions of ..."

  • ...In addition, prior biochemical and genetic studies have clearly shown that Rad52 assists assembly of Rad51 filaments on RPA-bound ssDNA [24,25,26,27,28,29,33]....

    [...]

  • ...This effect can be overcome in vitro by adding RPA after Rad51, or through the inclusion of the recombination mediator protein Rad52 (in yeast), or Brca2 (in humans) [24,25,26,27,28,29,30,31,32]....

    [...]

  • ...If added prior to or concurrently with Rad51, then RPA out competes Rad51 for available ssDNA binding sites [24,25,26,27,28,29]....

    [...]

  • ...the same ssDNA binding sites, and RPA binds to ssDNA more tightly than Rad51 [24,25,27]....

    [...]

  • ...consequence, RPA can outcompete Rad51 for ssDNA binding both in vitro and in vivo, and Rad51 requires mediator proteins such as Rad52 [24,25,27,33], implying that Rad51 itself lacks an...

    [...]

Journal ArticleDOI
TL;DR: This review summarizes the current understanding of RPA structure, phosphorylation and protein-protein interactions in mediating these DNA metabolic processes.
Abstract: Since the initial discovery of replication protein A (RPA) as a DNA replication factor, much progress has been made on elucidating critical roles for RPA in other DNA metabolic pathways. RPA has been shown to be required for DNA replication, DNA repair, DNA recombination, and the DNA damage response pathway with roles in checkpoint activation. This review summarizes the current understanding of RPA structure, phosphorylation and protein-protein interactions in mediating these DNA metabolic processes.

180 citations


Cites background from "Dynamic regulatory interactions of ..."

  • ...defects and likely stems from effects on RPA release from ssDNA, where Rad52 is unable to promote release of RPA from ssDNA and enable Rad51 exchange (164, 165)....

    [...]

Journal ArticleDOI
TL;DR: In contrast to the wild type protein, hRad52RQK/AAA and hRad521–212 mutants with impaired ability to bind hR PA protein competed with hRPA for binding to ssDNA and failed to counteract hRpa-mediated duplex destabilization highlighting the importance of hRad 52-hRPA interactions in promoting efficient DNA annealing.
Abstract: Rad52 promotes the annealing of complementary strands of DNA bound by replication protein A (RPA) during discrete repair pathways. Here, we used a fluorescence resonance energy transfer (FRET) between two fluorescent dyes incorporated into DNA substrates to probe the mechanism by which human Rad52 (hRad52) interacts with and mediates annealing of ssDNA-hRPA complexes. Human Rad52 bound ssDNA or ssDNA-hRPA complex in two, concentration-dependent modes. At low hRad52 concentrations, ssDNA was wrapped around the circumference of the protein ring, while at higher protein concentrations, ssDNA was stretched between multiple hRad52 rings. Annealing by hRad52 occurred most efficiently when each complementary DNA strand or each ssDNA-hRPA complex was bound by hRad52 in a wrapped configuration, suggesting homology search and annealing occur via two hRad52-ssDNA complexes. In contrast to the wild type protein, hRad52(RQK/AAA) and hRad52(1-212) mutants with impaired ability to bind hRPA protein competed with hRPA for binding to ssDNA and failed to counteract hRPA-mediated duplex destabilization highlighting the importance of hRad52-hRPA interactions in promoting efficient DNA annealing.

128 citations


Cites background from "Dynamic regulatory interactions of ..."

  • ...Formation of the hRPA–ssDNA–hRad52 complex on short oligonucleotides that can bind only one or two hRPA molecules distinguishes these proteins from their yeast counterparts, where formation of the stable yRPA–ssDNA–yRad52 complex requires multiple RPA molecules bound to the same ssDNA (59)....

    [...]

Journal ArticleDOI
09 May 2013-Oncogene
TL;DR: The results reveal a mechanism for the crosstalk between HR repair and NHEJ through the co-regulation of p53–RPA interaction by DNA-PK, ATM and ATR.
Abstract: Homologous recombination (HR) and nonhomologous end joining (NHEJ) are two distinct DNA double-stranded break (DSB) repair pathways. Here, we report that DNA-dependent protein kinase (DNA-PK), the core component of NHEJ, partnering with DNA-damage checkpoint kinases ataxia telangiectasia mutated (ATM) and ATM- and Rad3-related (ATR), regulates HR repair of DSBs. The regulation was accomplished through modulation of the p53 and replication protein A (RPA) interaction. We show that upon DNA damage, p53 and RPA were freed from a p53-RPA complex by simultaneous phosphorylations of RPA at the N-terminus of RPA32 subunit by DNA-PK and of p53 at Ser37 and Ser46 in a Chk1/Chk2-independent manner by ATR and ATM, respectively. Neither the phosphorylation of RPA nor of p53 alone could dissociate p53 and RPA. Furthermore, disruption of the release significantly compromised HR repair of DSBs. Our results reveal a mechanism for the crosstalk between HR repair and NHEJ through the co-regulation of p53-RPA interaction by DNA-PK, ATM and ATR.

100 citations

Journal ArticleDOI
TL;DR: This work illustrates the spatial and temporal progression of the association of RPA and Rad52 with the presynaptic complex and reveals a new RPA–Rad52–Rad51–ssDNA intermediate, with implications for how the activities of Rad52 and RPA are coordinated with Rad51 during the later stages of recombination.
Abstract: Homologous recombination is a conserved pathway for repairing double-stranded breaks, which are processed to yield single-stranded DNA overhangs that serve as platforms for presynaptic-complex assembly. Here we use single-molecule imaging to reveal the interplay between Saccharomyces cerevisiae RPA, Rad52 and Rad51 during presynaptic-complex assembly. We show that Rad52 binds RPA-ssDNA and suppresses RPA turnover, highlighting an unanticipated regulatory influence on protein dynamics. Rad51 binding extends the ssDNA, and Rad52-RPA clusters remain interspersed along the presynaptic complex. These clusters promote additional binding of RPA and Rad52. Our work illustrates the spatial and temporal progression of the association of RPA and Rad52 with the presynaptic complex and reveals a new RPA-Rad52-Rad51-ssDNA intermediate, with implications for how the activities of Rad52 and RPA are coordinated with Rad51 during the later stages of recombination.

82 citations

References
More filters
Book
15 Jan 2001
TL;DR: Molecular Cloning has served as the foundation of technical expertise in labs worldwide for 30 years as mentioned in this paper and has been so popular, or so influential, that no other manual has been more widely used and influential.
Abstract: Molecular Cloning has served as the foundation of technical expertise in labs worldwide for 30 years. No other manual has been so popular, or so influential. Molecular Cloning, Fourth Edition, by the celebrated founding author Joe Sambrook and new co-author, the distinguished HHMI investigator Michael Green, preserves the highly praised detail and clarity of previous editions and includes specific chapters and protocols commissioned for the book from expert practitioners at Yale, U Mass, Rockefeller University, Texas Tech, Cold Spring Harbor Laboratory, Washington University, and other leading institutions. The theoretical and historical underpinnings of techniques are prominent features of the presentation throughout, information that does much to help trouble-shoot experimental problems. For the fourth edition of this classic work, the content has been entirely recast to include nucleic-acid based methods selected as the most widely used and valuable in molecular and cellular biology laboratories. Core chapters from the third edition have been revised to feature current strategies and approaches to the preparation and cloning of nucleic acids, gene transfer, and expression analysis. They are augmented by 12 new chapters which show how DNA, RNA, and proteins should be prepared, evaluated, and manipulated, and how data generation and analysis can be handled. The new content includes methods for studying interactions between cellular components, such as microarrays, next-generation sequencing technologies, RNA interference, and epigenetic analysis using DNA methylation techniques and chromatin immunoprecipitation. To make sense of the wealth of data produced by these techniques, a bioinformatics chapter describes the use of analytical tools for comparing sequences of genes and proteins and identifying common expression patterns among sets of genes. Building on thirty years of trust, reliability, and authority, the fourth edition of Mol

215,169 citations

Journal ArticleDOI
06 Jun 2003-Science
TL;DR: The data suggest that RPA-coated ssDNA is the critical structure at sites of DNA damage that recruits the ATR-ATRIP complex and facilitates its recognition of substrates for phosphorylation and the initiation of checkpoint signaling.
Abstract: The function of the ATR (ataxia-telangiectasia mutated- and Rad3-related)-ATRIP (ATR-interacting protein) protein kinase complex is crucial for the cellular response to replication stress and DNA damage. Here, we show that replication protein A (RPA), a protein complex that associates with single-stranded DNA (ssDNA), is required for the recruitment of ATR to sites of DNA damage and for ATR-mediated Chk1 activation in human cells. In vitro, RPA stimulates the binding of ATRIP to ssDNA. The binding of ATRIP to RPA-coated ssDNA enables the ATR-ATRIP complex to associate with DNA and stimulates phosphorylation of the Rad17 protein that is bound to DNA. Furthermore, Ddc2, the budding yeast homolog of ATRIP, is specifically recruited to double-strand DNA breaks in an RPA-dependent manner. A checkpoint-deficient mutant of RPA, rfa1-t11, is defective for recruiting Ddc2 to ssDNA both in vivo and in vitro. Our data suggest that RPA-coated ssDNA is the critical structure at sites of DNA damage that recruits the ATR-ATRIP complex and facilitates its recognition of substrates for phosphorylation and the initiation of checkpoint signaling.

2,632 citations

Journal ArticleDOI
TL;DR: This review encompasses different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination.
Abstract: The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination.

2,175 citations


"Dynamic regulatory interactions of ..." refers methods in this paper

  • ...In the current model, DSB ends are resected to expose ssDNA with a 3′ tail that is considered to be the substrate for multiple pathways of recombination.(1,2) In vivo studies showed that RPA and Rad52 associate with the break site before Rad51 does....

    [...]

Journal ArticleDOI
TL;DR: HR accessory factors that facilitate other stages of the Rad51- and Dmc1-catalyzed homologous DNA pairing and strand exchange reaction have also been identified.
Abstract: Homologous recombination (HR) serves to eliminate deleterious lesions, such as double-stranded breaks and interstrand crosslinks, from chromosomes. HR is also critical for the preservation of repli- cation forks, for telomere maintenance, and chromosome segrega- tion in meiosis I. As such, HR is indispensable for the maintenance of genome integrity and the avoidance of cancers in humans. The HR reaction is mediated by a conserved class of enzymes termed recombinases. Two recombinases, Rad51 and Dmc1, catalyze the pairing and shuffling of homologous DNA sequences in eukaryotic cells via a filamentous intermediate on ssDNA called the presynaptic filament. The assembly of the presynaptic filament is a rate-limiting process that is enhanced by recombination mediators, such as the breast tumor suppressor BRCA2. HR accessory factors that facil- itate other stages of the Rad51- and Dmc1-catalyzed homologous DNA pairing and strand exchange reaction have also been identified. Recent progress on elucidating the mechanisms of action of Rad51 and Dmc1 and their cohorts of ancillary factors is reviewed here.

1,542 citations


"Dynamic regulatory interactions of ..." refers background in this paper

  • ...All rights reserve many of which are widely conserved in eukaryotes, are involved in DSB repair.(1,7) Among them, Rad51, a key protein in HR-mediated repair, is being studied aggressively....

    [...]

Journal ArticleDOI
Marc S. Wold1
TL;DR: Replication protein A (RPA) is a single-stranded DNA-binding protein that is required for multiple processes in eukaryotic DNA metabolism, including DNA replication, DNA repair, and recombination.
Abstract: Replication protein A [RPA; also known as replication factor A (RFA) and human single-stranded DNA-binding protein] is a single-stranded DNA-binding protein that is required for multiple processes in eukaryotic DNA metabolism, including DNA replication, DNA repair, and recombination. RPA homologues have been identified in all eukaryotic organisms examined and are all abundant heterotrimeric proteins composed of subunits of approximately 70, 30, and 14 kDa. Members of this family bind nonspecifically to single-stranded DNA and interact with and/or modify the activities of multiple proteins. In cells, RPA is phosphorylated by DNA-dependent protein kinase when RPA is bound to single-stranded DNA (during S phase and after DNA damage). Phosphorylation of RPA may play a role in coordinating DNA metabolism in the cell. RPA may also have a role in modulating gene expression.

1,454 citations