scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Dynamics in the plasma membrane: how to combine fluidity and order

TL;DR: The basic concepts of Brownian diffusion and lipid domain formation in model membranes are summarized and the development of ideas and tools in this field are tracked, outlining key results obtained on the dynamic processes at work in membrane structure and assembly.
Abstract: Cell membranes are fascinating supramolecular aggregates that not only form a barrier between compartments but also harbor many chemical reactions essential to the existence and functioning of a cell. Here, it is proposed to review the molecular dynamics and mosaic organization of the plasma membrane, which are thought to have important functional implications. We will first summarize the basic concepts of Brownian diffusion and lipid domain formation in model membranes and then track the development of ideas and tools in this field, outlining key results obtained on the dynamic processes at work in membrane structure and assembly. We will focus in particular on findings made using fluorescent labeling and imaging procedures to record these dynamic processes. We will also discuss a few examples showing the impact of lateral diffusion on cell signal transduction, and outline some future methodological challenges which must be met before we can answer some of the questions arising in this field of research.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: This work shows that the motion of unlabelled membrane proteins can be characterized using high-speed atomic force microscopy and determines an interaction potential map and an interaction pathway for a membrane protein, which should provide new insights into the connection between the structures of individual proteins and the structures and dynamics of supramolecular membranes.
Abstract: For cells to function properly, membrane proteins must be able to diffuse within biological membranes. The functions of these membrane proteins depend on their position and also on protein-protein and protein-lipid interactions. However, so far, it has not been possible to study simultaneously the structure and dynamics of biological membranes. Here, we show that the motion of unlabelled membrane proteins can be characterized using high-speed atomic force microscopy. We find that the molecules of outer membrane protein F (OmpF) are widely distributed in the membrane as a result of diffusion-limited aggregation, and while the overall protein motion scales roughly with the local density of proteins in the membrane, individual protein molecules can also diffuse freely or become trapped by protein-protein interactions. Using these measurements, and the results of molecular dynamics simulations, we determine an interaction potential map and an interaction pathway for a membrane protein, which should provide new insights into the connection between the structures of individual proteins and the structures and dynamics of supramolecular membranes.

192 citations

Journal ArticleDOI
TL;DR: How MDR can be overcome by a simple yet effective approach of using amphiphilic block copolymers is described.
Abstract: Multidrug resistance (MDR) remains one of the biggest obstacles for effective cancer therapy. Currently there are only few methods that are available clinically that are used to bypass MDR with very limited success. In this review we describe how MDR can be overcome by a simple yet effective approach of using amphiphilic block copolymers. Triblock copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO), arranged in a triblock structure PEO-PPO-PEO, Pluronics or “poloxamers”, raised a considerable interest in the drug delivery field. Previous studies demonstrated that Pluronics sensitize MDR cancer cells resulting in increased cytotoxic activity of Dox, paclitaxel, and other drugs by 2–3 orders of magnitude. Pluronics can also prevent the development of MDR in vitro and in vivo. Additionally, promising results of clinical studies of Dox/Pluronic formulation reinforced the need to ascertain a thorough understanding of Pluronic effects in tumors. These effects are extremely comprehensive and...

189 citations

Journal ArticleDOI
01 Oct 2008-Methods
TL;DR: This paper describes strategies how to make use of single molecule trajectories for deducing information about nanoscopic structures in a live cell context and focuses on elucidating the plasma membrane organization by single molecule tracking.

183 citations

Journal ArticleDOI
TL;DR: It is reported that the post‐translational modification of Fas by palmitoylation at the membrane proximal cysteine residue in the cytoplasmic region is the targeting signal for Fas localization to lipid rafts, as demonstrated in both cell‐free and living cell systems.
Abstract: Localization of the death receptor Fas to specialized membrane microdomains is crucial to Fas-mediated cell death signaling. Here, we report that the post-translational modification of Fas by palmitoylation at the membrane proximal cysteine residue in the cytoplasmic region is the targeting signal for Fas localization to lipid rafts, as demonstrated in both cell-free and living cell systems. Palmitoylation is required for the redistribution of Fas to actin cytoskeleton-linked rafts upon Fas stimulation and for the raft-dependent, ezrin-mediated cytoskeleton association, which is necessary for the efficient Fas receptor internalization, death-inducing signaling complex assembly and subsequent caspase cascade leading to cell death.

177 citations


Cites methods from "Dynamics in the plasma membrane: ho..."

  • ...In addition, we demonstrated this association by analyzing the lipid microdomains in living cells through an ultra-resolution imaging technique using the FCS approach (Figure 3D), which records measurements at different spatial scales of observation (Marguet et al, 2006)....

    [...]

Book ChapterDOI
TL;DR: This review focuses on the properties of lipid rafts and caveolae, the mechanisms by which they localize signaling molecules and the identity of GPCR signaling components that are organized in these domains.
Abstract: The efficiency of signal transduction in cells derives in part from subcellular, in particular plasma membrane, microdomains that organize signaling molecules and signaling complexes. Two related plasma membrane domains that compartmentalize G-protein coupled receptor (GPCR) signaling complexes are lipid (membrane) rafts, domains that are enriched in certain lipids, including cholesterol and sphingolipids, and caveolae, a subset of lipid rafts that are enriched in the protein caveolin. This review focuses on the properties of lipid rafts and caveolae, the mechanisms by which they localize signaling molecules and the identity of GPCR signaling components that are organized in these domains.

158 citations

References
More filters
Journal ArticleDOI
18 Feb 1972-Science
TL;DR: Results strongly indicate that the bivalent antibodies produce an aggregation of the surface immunoglobulin molecules in the plane of the membrane, which can occur only if the immunoglOBulin molecules are free to diffuse in the membrane.
Abstract: A fluid mosaic model is presented for the gross organization and structure of the proteins and lipids of biological membranes. The model is consistent with the restrictions imposed by thermodynamics. In this model, the proteins that are integral to the membrane are a heterogeneous set of globular molecules, each arranged in an amphipathic structure, that is, with the ionic and highly polar groups protruding from the membrane into the aqueous phase, and the nonpolar groups largely buried in the hydrophobic interior of the membrane. These globular molecules are partially embedded in a matrix of phospholipid. The bulk of the phospholipid is organized as a discontinuous, fluid bilayer, although a small fraction of the lipid may interact specifically with the membrane proteins. The fluid mosaic structure is therefore formally analogous to a two-dimensional oriented solution of integral proteins (or lipoproteins) in the viscous phospholipid bilayer solvent. Recent experiments with a wide variety of techniqes and several different membrane systems are described, all of which abet consistent with, and add much detail to, the fluid mosaic model. It therefore seems appropriate to suggest possible mechanisms for various membrane functions and membrane-mediated phenomena in the light of the model. As examples, experimentally testable mechanisms are suggested for cell surface changes in malignant transformation, and for cooperative effects exhibited in the interactions of membranes with some specific ligands. Note added in proof: Since this article was written, we have obtained electron microscopic evidence (69) that the concanavalin A binding sites on the membranes of SV40 virus-transformed mouse fibroblasts (3T3 cells) are more clustered than the sites on the membranes of normal cells, as predicted by the hypothesis represented in Fig. 7B. T-here has also appeared a study by Taylor et al. (70) showing the remarkable effects produced on lymphocytes by the addition of antibodies directed to their surface immunoglobulin molecules. The antibodies induce a redistribution and pinocytosis of these surface immunoglobulins, so that within about 30 minutes at 37 degrees C the surface immunoglobulins are completely swept out of the membrane. These effects do not occur, however, if the bivalent antibodies are replaced by their univalent Fab fragments or if the antibody experiments are carried out at 0 degrees C instead of 37 degrees C. These and related results strongly indicate that the bivalent antibodies produce an aggregation of the surface immunoglobulin molecules in the plane of the membrane, which can occur only if the immunoglobulin molecules are free to diffuse in the membrane. This aggregation then appears to trigger off the pinocytosis of the membrane components by some unknown mechanism. Such membrane transformations may be of crucial importance in the induction of an antibody response to an antigen, as well as iv other processes of cell differentiation.

7,790 citations

Journal ArticleDOI
28 Jan 2005-Science
TL;DR: The new generations of qdots have far-reaching potential for the study of intracellular processes at the single-molecule level, high-resolution cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, and diagnostics.
Abstract: Research on fluorescent semiconductor nanocrystals (also known as quantum dots or qdots) has evolved over the past two decades from electronic materials science to biological applications. We review current approaches to the synthesis, solubilization, and functionalization of qdots and their applications to cell and animal biology. Recent examples of their experimental use include the observation of diffusion of individual glycine receptors in living neurons and the identification of lymph nodes in live animals by near-infrared emission during surgery. The new generations of qdots have farreaching potential for the study of intracellular processes at the single-molecule level, high-resolution cellular imaging, long-term in vivo observation of cell trafficking, tumor targeting, and diagnostics.

7,499 citations


"Dynamics in the plasma membrane: ho..." refers background in this paper

  • ...The use of fluorescent quantum dots is emerging as a promising alternative to classical fluorescent tags (GFPs and organic fluorophores) (Michalet et al, 2005)....

    [...]

  • ...…quantum yields, large molar extinction coefficients, size-dependent tunable emission and high photostability) make them appeal- &2006 European Molecular Biology Organization The EMBO Journal VOL 25 | NO 15 | 2006 3449 ing candidate tags for use with SDT (Dahan et al, 2003; Michalet et al, 2005)....

    [...]

Journal ArticleDOI
TL;DR: This review looks at current methods for preparing QD bioconjugates as well as presenting an overview of applications, and concludes that the potential of QDs in biology has just begun to be realized and new avenues will arise as the ability to manipulate these materials improves.
Abstract: One of the fastest moving and most exciting interfaces of nanotechnology is the use of quantum dots (QDs) in biology. The unique optical properties of QDs make them appealing as in vivo and in vitro fluorophores in a variety of biological investigations, in which traditional fluorescent labels based on organic molecules fall short of providing long-term stability and simultaneous detection of multiple signals. The ability to make QDs water soluble and target them to specific biomolecules has led to promising applications in cellular labelling, deep-tissue imaging, assay labelling and as efficient fluorescence resonance energy transfer donors. Despite recent progress, much work still needs to be done to achieve reproducible and robust surface functionalization and develop flexible bioconjugation techniques. In this review, we look at current methods for preparing QD bioconjugates as well as presenting an overview of applications. The potential of QDs in biology has just begun to be realized and new avenues will arise as our ability to manipulate these materials improves.

5,875 citations


"Dynamics in the plasma membrane: ho..." refers background in this paper

  • ...However, there is still a need to improve the functionalization of QD surfaces, the flexibility for bioconjugations and single irreversible molecular associations between individually tracked molecules (Medintz et al, 2005)....

    [...]

Book
01 Jan 1983
TL;DR: This book is a lucid, straightforward introduction to the concepts and techniques of statistical physics that students of biology, biochemistry, and biophysics must know.
Abstract: This book is a lucid, straightforward introduction to the concepts and techniques of statistical physics that students of biology, biochemistry, and biophysics must know. It provides a sound basis for understanding random motions of molecules, subcellular particles, or cells, or of processes that depend on such motion or are markedly affected by it. Readers do not need to understand thermodynamics in order to acquire a knowledge of the physics involved in diffusion, sedimentation, electrophoresis, chromatography, and cell motility--subjects that become lively and immediate when the author discusses them in terms of random walks of individual particles.

3,041 citations


"Dynamics in the plasma membrane: ho..." refers background in this paper

  • ...Brownian motion is a principle that applies to all biological systems (Berg, 1983): as the result of thermal agitation processes, molecules are constantly on the move, colliding with each other and bouncing back and forth (Figure 1)....

    [...]

  • ...…plasma membrane dynamics Brownian motion, diffusion and membrane organization Brownian motion is a principle that applies to all biological systems (Berg, 1983): as the result of thermal agitation processes, molecules are constantly on the move, colliding with each other and bouncing back and…...

    [...]

Journal ArticleDOI
TL;DR: A unified characterization of the best available FPs provides a useful guide in narrowing down the options for biological imaging tools.
Abstract: The recent explosion in the diversity of available fluorescent proteins (FPs) promises a wide variety of new tools for biological imaging. With no unified standard for assessing these tools, however, a researcher is faced with difficult questions. Which FPs are best for general use? Which are the brightest? What additional factors determine which are best for a given experiment? Although in many cases, a trial-and-error approach may still be necessary in determining the answers to these questions, a unified characterization of the best available FPs provides a useful guide in narrowing down the options.

2,933 citations


"Dynamics in the plasma membrane: ho..." refers background in this paper

  • ...As the cDNA encoding the GFP was characterized, a wide variety of monomeric fluorescent proteins have provided attractive potential candidates for monitoring dynamic processes in which different molecular species are simultaneously involved (for a review, see Shaner et al, 2005)....

    [...]