scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Dynamics, vibration and control of rotating composite beams and blades: A critical review

01 Oct 2017-Thin-walled Structures (Elsevier)-Vol. 119, pp 795-819
TL;DR: In this article, a comprehensive review of articles about rotating composite beams and blades is presented, which addresses analytical, semi-analytical and numerical studies dealing with dynamical problems involving adaptive/smart/intelligent materials (e.g., piezoelectric materials, electrorheological fluids, shape memory alloys, etc.), damping and vibration control, advanced composite materials, complicating effects and loadings, and experimental methods.
Abstract: Rotating composite beams and blades have a wide range of applications in various engineering structures such as wind turbines, industrial fans, and steam turbines. Therefore, proper understanding of such structures is of a great importance. As a result, the behavior of rotating composite beam structures has received a lot of attention. This paper presents a comprehensive review of scholarly articles about rotating composite beams as published in the past decades. The review addresses analytical, semi-analytical and numerical studies dealing with dynamical problems involving adaptive/smart/intelligent materials (e.g. piezoelectric materials, electrorheological fluids, shape memory alloys, etc.), damping and vibration control, advanced composite materials (e.g. functionally graded materials and nanocomposites), complicating effects and loadings (e.g. added mass, tapered beams, initial curve and twist, etc.), and experimental methods. Moreover, the influence of Vlasov or restrained warping, out-of-plane warping, transverse shear, arbitrary cross-sectional geometry, trapeze phenomena, swept tip, size-dependent effect, as well as other areas that have been considered in research, are reviewed in depth. The review concludes with a presentation of the remaining challenges and future research needs.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors reviewed most of the studies carried out from 2000 on optimizing composite structures by representing a classification based on the type of structures and highlighted important parameters of these optimization approaches namely objective functions, design variables, constraints and the applied algorithms.

209 citations

Journal ArticleDOI
TL;DR: In this paper, the free vibrations of the rotating pretwisted functionally graded (FG) composite cylindrical panels reinforced with the graphene platelets (GPLs) were investigated by considering the cantilever boundary conditions.
Abstract: This paper investigates the free vibrations of the rotating pretwisted functionally graded (FG) composite cylindrical panels reinforced with the graphene platelets (GPLs) by considering the cantilever boundary conditions. The weight fraction of the graphene platelets in each ply may be different, which leads to the layer-wise functionally graded composite cylindrical panels reinforced with the GPLs. The effective Young's modulus is calculated by the modified Halpin-Tsai model. The effective Poisson's ratio and mass density are derived by the rule of the mixture. The strain-displacement relationship is acquired by the Green strain tensor. Based on the first-order shear deformation theory, Chebyshev-Ritz method is used to obtain the natural frequencies of the rotating pretwisted functionally graded composite cylindrical panel reinforced with the GPLs. The natural frequencies are discussed by considering different material and geometry parameters of the rotating pretwisted functionally graded composite cylindrical panel reinforced with the GPLs, such as the GPL distribution pattern, the GPL weight fraction, the geometries of the GPLs, the pretwisted angle, the presetting angle and the rotating speed. Several validations are carried out, the numerical results are in good agreement with the results of the literature and ANSYS.

126 citations

Journal ArticleDOI
TL;DR: In this paper, a new dynamic model of the rotating tapered cantilever cylindrical panel with the graphene coating layers is developed to investigate the vibration characteristics of a rotating pretwisted tapered blade.

83 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the coupled modeling method and free vibration characteristics of a graphene nanoplatelet (GPL) reinforced blade-disk rotor system in which the blade has a pre-twist angle and setting angle.

58 citations

Journal ArticleDOI
TL;DR: In this paper, the aeroelastic analysis of functionally graded (FG) multilayer graphene platelet reinforced polymer composite (GPLRPC) rotating blades under supersonic flow is investigated.

48 citations

References
More filters
Journal ArticleDOI
J. N. Reddy1
TL;DR: In this paper, a higher-order shear deformation theory of laminated composite plates is developed, which accounts for parabolic distribution of the transverse shear strains through the thickness of the plate.
Abstract: A higher-order shear deformation theory of laminated composite plates is developed. The theory contains the same dependent unknowns as in the first-order shear deformation theory of Whitney and Pagano (1970), but accounts for parabolic distribution of the transverse shear strains through the thickness of the plate. Exact closed-form solutions of symmetric cross-ply laminates are obtained and the results are compared with three-dimensional elasticity solutions and first-order shear deformation theory solutions. The present theory predicts the deflections and stresses more accurately when compared to the first-order theory.

3,504 citations

Journal ArticleDOI
TL;DR: In this article, the correction for shear of the differential equation for transverse vibrations of prismatic bars is discussed, where the correction is based on the correction of the transverse vibration of a prismatic bar.
Abstract: (1921). LXVI. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science: Vol. 41, No. 245, pp. 744-746.

2,255 citations

Book
01 Jan 1959

1,142 citations

Journal ArticleDOI
TL;DR: In this paper, a new standard plate theory, which accounts for cosine shear stress distribution and free boundary conditions for shear stresses upon the top and bottom surfaces of the plate, is presented.

932 citations

Journal ArticleDOI
TL;DR: In this article, the full development and analysis of four models for the transversely vibrating uniform beam are presented, including the Euler-Bernoulli, Rayleigh, shear and Timoshenko models.

833 citations