scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Dysbiosis of the faecal microbiota in patients with Crohn's disease and their unaffected relatives

01 May 2011-Gut (BMJ Publishing Group)-Vol. 60, Iss: 5, pp 631-637
TL;DR: This dysbiosis is not characterised by lack of butyrate producing-bacteria as observed in CD but suggests a role for microorganisms with mucin degradation capacity.
Abstract: Background and aims A general dysbiosis of the intestinal microbiota has been established in patients with Crohn’s disease (CD), but a systematic characterisation of this dysbiosis is lacking. Therefore the composition of the predominant faecal microbiota of patients with CD was studied in comparison with the predominant composition in unaffected controls. Whether dysbiosis is present in relatives of patients CD was also examined. Methods Focusing on families with at least three members affected with CD, faecal samples of 68 patients with CD, 84 of their unaffected relatives and 55 matched controls were subjected to community fingerprinting of the predominant microbiota using denaturing gradient gel electrophoresis (DGGE). To analyse the DGGE profiles, BioNumerics software and non-parametric statistical analyses (SPSS V.17.0) were used. Observed differences in the predominant microbiota were subsequently confirmed and quantified with real-time PCR. Results Five bacterial species characterised dysbiosis in CD, namely a decrease in Dialister invisus (p¼0.04), an uncharacterised species of Clostridium cluster XIVa (p¼0.03), Faecalibacterium prausnitzii (p<1.3310 � 5 ) and Bifidobacterium adolescentis (p¼5.4310 � 6 ), and an increase in Ruminococcus gnavus (p¼2.1310 � 7 ). Unaffected relatives of patients with CD had less Collinsella aerofaciens (p¼0.004) and a member of the Escherichia colieShigella group (p¼0.01) and more Ruminococcus torques (p¼0.02) in their predominant microbiota as compared with healthy subjects. Conclusion Unaffected relatives of patients with CD have a different composition of their microbiota compared with healthy controls. This dysbiosis is not characterised by lack of butyrate producing-bacteria as observed in CD but suggests a role for microorganisms with mucin degradation capacity.
Citations
More filters
Journal ArticleDOI
04 Oct 2012-Nature
TL;DR: MGWAS analysis showed that patients with type 2 diabetes were characterized by a moderate degree of gut microbial dysbiosis, a decrease in the abundance of some universal butyrate-producing bacteria and an increase in various opportunistic pathogens, as well as an enrichment of other microbial functions conferring sulphate reduction and oxidative stress resistance.
Abstract: Assessment and characterization of gut microbiota has become a major research area in human disease, including type 2 diabetes, the most prevalent endocrine disease worldwide. To carry out analysis on gut microbial content in patients with type 2 diabetes, we developed a protocol for a metagenome-wide association study (MGWAS) and undertook a two-stage MGWAS based on deep shotgun sequencing of the gut microbial DNA from 345 Chinese individuals. We identified and validated approximately 60,000 type-2-diabetes-associated markers and established the concept of a metagenomic linkage group, enabling taxonomic species-level analyses. MGWAS analysis showed that patients with type 2 diabetes were characterized by a moderate degree of gut microbial dysbiosis, a decrease in the abundance of some universal butyrate-producing bacteria and an increase in various opportunistic pathogens, as well as an enrichment of other microbial functions conferring sulphate reduction and oxidative stress resistance. An analysis of 23 additional individuals demonstrated that these gut microbial markers might be useful for classifying type 2 diabetes.

4,981 citations

Journal ArticleDOI
29 Aug 2013-Nature
TL;DR: The authors' classifications based on variation in the gut microbiome identify subsets of individuals in the general white adult population who may be at increased risk of progressing to adiposity-associated co-morbidities.
Abstract: We are facing a global metabolic health crisis provoked by an obesity epidemic. Here we report the human gut microbial composition in a population sample of 123 non-obese and 169 obese Danish individuals. We find two groups of individuals that differ by the number of gut microbial genes and thus gut bacterial richness. They contain known and previously unknown bacterial species at different proportions; individuals with a low bacterial richness (23% of the population) are characterized by more marked overall adiposity, insulin resistance and dyslipidaemia and a more pronounced inflammatory phenotype when compared with high bacterial richness individuals. The obese individuals among the lower bacterial richness group also gain more weight over time. Only a few bacterial species are sufficient to distinguish between individuals with high and low bacterial richness, and even between lean and obese participants. Our classifications based on variation in the gut microbiome identify subsets of individuals in the general white adult population who may be at increased risk of progressing to adiposity-associated co-morbidities.

3,448 citations

Journal ArticleDOI
TL;DR: The gut microbiota of infants delivered by C-section showed significantly less resemblance to their mothers and nutrition had a major impact on early microbiota composition and function, with cessation of breast-feeding, rather than introduction of solid food, being required for maturation into an adult-like microbiota.

2,227 citations


Cites background from "Dysbiosis of the faecal microbiota ..."

  • ...R. gnavus can utilize host mucin glycans and has been found to increase in adult patients with Crohn’s disease, while Roseburia inulinivorans grows on the prebiotic dietary fiber inulin (Joossens et al., 2011; Prindiville et al., 2004; Willing et al., 2010)....

    [...]

Journal ArticleDOI
TL;DR: The microbiome of ileal Crohn's disease was notable for increases in virulence and secretion pathways, and the first insights into community-wide microbial processes and pathways that underpin IBD pathogenesis are provided.
Abstract: Background: The inflammatory bowel diseases (IBD) Crohn’s disease and ulcerative colitis result from alterations in intestinal microbes and the immune system. However, the precise dysfunctions of microbial metabolism in the gastrointestinal microbiome during IBD remain unclear. We analyzed the microbiota of intestinal biopsies and stool samples from 231 IBD and healthy subjects by 16S gene pyrosequencing and followed up a subset using shotgun metagenomics. Gene and pathway composition were assessed, based on 16S data from phylogenetically-related reference genomes, and associated using sparse multivariate linear modeling with medications, environmental factors, and IBD status. Results: Firmicutes and Enterobacteriaceae abundances were associated with disease status as expected, but also with treatment and subject characteristics. Microbial function, though, was more consistently perturbed than composition, with 12% of analyzed pathways changed compared with 2% of genera. We identified major shifts in oxidative stress pathways, as well as decreased carbohydrate metabolism and amino acid biosynthesis in favor of nutrient transport and uptake. The microbiome of ileal Crohn’s disease was notable for increases in virulence and secretion pathways.

2,189 citations

Journal ArticleDOI
TL;DR: An overview of microbial SCFAs production and their effects on the intestinal mucosa with specific emphasis on their relevance for Inflammatory Bowel Diseases is presented and the therapeutic potential ofSCFAs for IBD is discussed.
Abstract: Ulcerative colitis (UC) and Crohn's disease (CD), collectively known as Inflammatory Bowel Diseases (IBD), are caused by a complex interplay between genetic, immunologic, microbial and environmental factors. Dysbiosis of the gut microbiome is increasingly considered to be causatively related to IBD and is strongly affected by components of a Western life style. Bacteria that ferment fibers and produce short chain fatty acids (SCFAs) are typically reduced in mucosa and feces of patients with IBD, as compared to healthy individuals. SCFAs, such as acetate, propionate and butyrate, are important metabolites in maintaining intestinal homeostasis. Several studies have indeed shown that fecal SCFAs levels are reduced in active IBD. SCFAs are an important fuel for intestinal epithelial cells and are known to strengthen the gut barrier function. Recent findings, however, show that SCFAs, and in particular butyrate, also have important immunomodulatory functions. Absorption of SCFAs is facilitated by substrate transporters like MCT1 and SMCT1 to promote cellular metabolism. Moreover, SCFAs may signal through cell surface G-protein coupled receptors (GPCRs), like GPR41, GPR43, and GPR109A, to activate signaling cascades that control immune functions. Transgenic mouse models support the key role of these GPCRs in controlling intestinal inflammation. Here, we present an overview of microbial SCFAs production and their effects on the intestinal mucosa with specific emphasis on their relevance for IBD. Moreover, we discuss the therapeutic potential of SCFAs for IBD, either applied directly or by stimulating SCFAs-producing bacteria through pre- or probiotic approaches.

1,732 citations

References
More filters
Journal ArticleDOI
31 May 2001-Nature
TL;DR: It is suggested that the NOD2 gene product confers susceptibility to Crohn's disease by altering the recognition of these components and/or by over-activating NF-kB in monocytes, thus documenting a molecular model for the pathogenic mechanism of Crohn’s disease that can now be further investigated.
Abstract: Crohn's disease and ulcerative colitis, the two main types of chronic inflammatory bowel disease, are multifactorial conditions of unknown aetiology A susceptibility locus for Crohn's disease has been mapped to chromosome 16 Here we have used a positional-cloning strategy, based on linkage analysis followed by linkage disequilibrium mapping, to identify three independent associations for Crohn's disease: a frameshift variant and two missense variants of NOD2, encoding a member of the Apaf-1/Ced-4 superfamily of apoptosis regulators that is expressed in monocytes These NOD2 variants alter the structure of either the leucine-rich repeat domain of the protein or the adjacent region NOD2 activates nuclear factor NF-kB; this activating function is regulated by the carboxy-terminal leucine-rich repeat domain, which has an inhibitory role and also acts as an intracellular receptor for components of microbial pathogens These observations suggest that the NOD2 gene product confers susceptibility to Crohn's disease by altering the recognition of these components and/or by over-activating NF-kB in monocytes, thus documenting a molecular model for the pathogenic mechanism of Crohn's disease that can now be further investigated

5,388 citations


"Dysbiosis of the faecal microbiota ..." refers background in this paper

  • ...The first gene identified in CD, NOD2/ CARD15, belongs to the family of pattern recognition receptors (PRRs) which are part of the human innate immunity.(18) 19 PRRs recognise specific bacterial sequences and are responsible for the defence against those organisms....

    [...]

Journal ArticleDOI
31 May 2001-Nature
TL;DR: It is shown that a frameshift mutation caused by a cytosine insertion, 3020insC, which is expected to encode a truncated NOD2 protein, is associated with Crohn's disease, and a link between an innate immune response to bacterial components and development of disease is suggested.
Abstract: Crohn's disease is a chronic inflammatory disorder of the gastrointestinal tract, which is thought to result from the effect of environmental factors in a genetically predisposed host. A gene location in the pericentromeric region of chromosome 16, IBD1, that contributes to susceptibility to Crohn's disease has been established through multiple linkage studies, but the specific gene(s) has not been identified. NOD2, a gene that encodes a protein with homology to plant disease resistance gene products is located in the peak region of linkage on chromosome 16 (ref. 7). Here we show, by using the transmission disequilibium test and case-control analysis, that a frameshift mutation caused by a cytosine insertion, 3020insC, which is expected to encode a truncated NOD2 protein, is associated with Crohn's disease. Wild-type NOD2 activates nuclear factor NF-kappaB, making it responsive to bacterial lipopolysaccharides; however, this induction was deficient in mutant NOD2. These results implicate NOD2 in susceptibility to Crohn's disease, and suggest a link between an innate immune response to bacterial components and development of disease.

4,838 citations


"Dysbiosis of the faecal microbiota ..." refers background in this paper

  • ...belongs to the family of pattern recognition receptors (PRRs) which are part of the human innate immunity....

    [...]

Journal ArticleDOI
TL;DR: Patient stratification by GI microbiota provides further evidence that CD represents a spectrum of disease states and suggests that treatment of some forms of IBD may be facilitated by redress of the detected microbiological imbalances.
Abstract: The two primary human inflammatory bowel diseases, Crohn's disease (CD) and ulcerative colitis (UC), are idiopathic relapsing disorders characterized by chronic inflammation of the intestinal tract. Although several lines of reasoning suggest that gastrointestinal (GI) microbes influence inflammatory bowel disease (IBD) pathogenesis, the types of microbes involved have not been adequately described. Here we report the results of a culture-independent rRNA sequence analysis of GI tissue samples obtained from CD and UC patients, as well as non-IBD controls. Specimens were obtained through surgery from a variety of intestinal sites and included both pathologically normal and abnormal states. Our results provide comprehensive molecular-based analysis of the microbiota of the human small intestine. Comparison of clone libraries reveals statistically significant differences between the microbiotas of CD and UC patients and those of non-IBD controls. Significantly, our results indicate that a subset of CD and UC samples contained abnormal GI microbiotas, characterized by depletion of commensal bacteria, notably members of the phyla Firmicutes and Bacteroidetes. Patient stratification by GI microbiota provides further evidence that CD represents a spectrum of disease states and suggests that treatment of some forms of IBD may be facilitated by redress of the detected microbiological imbalances.

3,967 citations


"Dysbiosis of the faecal microbiota ..." refers background in this paper

  • ...A general dysbiosis in patients with CD has been described with both culture-dependent and culture-independent techniques,...

    [...]

Journal ArticleDOI
TL;DR: The results suggest that counterbalancing dysbiosis using F. prausnitzii as a probiotic is a promising strategy in CD treatment and exhibits anti-inflammatory effects on cellular and TNBS colitis models, partly due to secreted metabolites able to block NF-κB activation and IL-8 production.
Abstract: A decrease in the abundance and biodiversity of intestinal bacteria within the dominant phylum Firmicutes has been observed repeatedly in Crohn disease (CD) patients. In this study, we determined the composition of the mucosa-associated microbiota of CD patients at the time of surgical resection and 6 months later using FISH analysis. We found that a reduction of a major member of Firmicutes, Faecalibacterium prausnitzii, is associated with a higher risk of postoperative recurrence of ileal CD. A lower proportion of F. prausnitzii on resected ileal Crohn mucosa also was associated with endoscopic recurrence at 6 months. To evaluate the immunomodulatory properties of F. prausnitzii we analyzed the anti-inflammatory effects of F. prausnitzii in both in vitro (cellular models) and in vivo [2,4,6-trinitrobenzenesulphonic acid (TNBS)-induced] colitis in mice. In Caco-2 cells transfected with a reporter gene for NF-kappaB activity, F. prausnitzii had no effect on IL-1beta-induced NF-kappaB activity, whereas the supernatant abolished it. In vitro peripheral blood mononuclear cell stimulation by F. prausnitzii led to significantly lower IL-12 and IFN-gamma production levels and higher secretion of IL-10. Oral administration of either live F. prausnitzii or its supernatant markedly reduced the severity of TNBS colitis and tended to correct the dysbiosis associated with TNBS colitis, as demonstrated by real-time quantitative PCR (qPCR) analysis. F. prausnitzii exhibits anti-inflammatory effects on cellular and TNBS colitis models, partly due to secreted metabolites able to block NF-kappaB activation and IL-8 production. These results suggest that counterbalancing dysbiosis using F. prausnitzii as a probiotic is a promising strategy in CD treatment.

3,653 citations


"Dysbiosis of the faecal microbiota ..." refers background in this paper

  • ...15e17 Moreover, the ability to produce butyrate and the anti-inflammatory properties of this species provide a coherent biological explanation for its lower presence in patients with CD.(15) A more extended and detailed description of the observed dysbiosis in CD is, however, still lacking....

    [...]

Journal ArticleDOI
01 Feb 2006-Gut
TL;DR: The metagenomic approach allowed us to detect a reduced complexity of the bacterial phylum Firmicutes as a signature of the faecal microbiota in patients with CD, and indicated the presence of new bacterial species.
Abstract: Background and aim: A role for the intestinal microbial community (microbiota) in the onset and chronicity of Crohn’s disease (CD) is strongly suspected. However, investigation of such a complex ecosystem is difficult, even with culture independent molecular approaches. Methods: We used, for the first time, a comprehensive metagenomic approach to investigate the full range of intestinal microbial diversity. We used a fosmid vector to construct two libraries of genomic DNA isolated directly from faecal samples of six healthy donors and six patients with CD. Bacterial diversity was analysed by screening the two DNA libraries, each composed of 25 000 clones, for the 16S rRNA gene by DNA hybridisation. Results: Among 1190 selected clones, we identified 125 non-redundant ribotypes mainly represented by the phyla Bacteroidetes and Firmicutes. Among the Firmicutes, 43 distinct ribotypes were identified in the healthy microbiota, compared with only 13 in CD (p<0.025). Fluorescent in situ hybridisation directly targeting 16S rRNA in faecal samples analysed individually (n = 12) confirmed the significant reduction in the proportion of bacteria belonging to this phylum in CD patients (p<0.02). Conclusion: The metagenomic approach allowed us to detect a reduced complexity of the bacterial phylum Firmicutes as a signature of the faecal microbiota in patients with CD. It also indicated the presence of new bacterial species.

2,074 citations

Related Papers (5)
01 Nov 2012-Nature
Luke Jostins, Stephan Ripke, Rinse K. Weersma, Richard H. Duerr, Dermot P.B. McGovern, Ken Y. Hui, James Lee, L. Philip Schumm, Yashoda Sharma, Carl A. Anderson, Jonah Essers, Mitja Mitrovic, Kaida Ning, Isabelle Cleynen, Emilie Theatre, Sarah L. Spain, Soumya Raychaudhuri, Philippe Goyette, Zhi Wei, Clara Abraham, Jean-Paul Achkar, Tariq Ahmad, Leila Amininejad, Ashwin N. Ananthakrishnan, Vibeke Andersen, Jane M. Andrews, Leonard Baidoo, Tobias Balschun, Peter A. Bampton, Alain Bitton, Gabrielle Boucher, Stephan Brand, Carsten Büning, Ariella Cohain, Sven Cichon, Mauro D'Amato, Dirk De Jong, Kathy L Devaney, Marla Dubinsky, Cathryn Edwards, David Ellinghaus, Lynnette R. Ferguson, Denis Franchimont, Karin Fransen, Richard B. Gearry, Michel Georges, Christian Gieger, Jürgen Glas, Talin Haritunians, Ailsa Hart, Christopher J. Hawkey, Matija Hedl, Xinli Hu, Tom H. Karlsen, Limas Kupčinskas, Subra Kugathasan, Anna Latiano, Debby Laukens, Ian C. Lawrance, Charlie W. Lees, Edouard Louis, Gillian Mahy, John C. Mansfield, Angharad R. Morgan, Craig Mowat, William G. Newman, Orazio Palmieri, Cyriel Y. Ponsioen, Uroš Potočnik, Natalie J. Prescott, Miguel Regueiro, Jerome I. Rotter, Richard K Russell, Jeremy D. Sanderson, Miquel Sans, Jack Satsangi, Stefan Schreiber, Lisa A. Simms, Jurgita Sventoraityte, Stephan R. Targan, Kent D. Taylor, Mark Tremelling, Hein W. Verspaget, Martine De Vos, Cisca Wijmenga, David C. Wilson, Juliane Winkelmann, Ramnik J. Xavier, Sebastian Zeissig, Bin Zhang, Clarence K. Zhang, Hongyu Zhao, Mark S. Silverberg, Vito Annese, Hakon Hakonarson, Steven R. Brant, Graham L. Radford-Smith, Christopher G. Mathew, John D. Rioux, Eric E. Schadt, Mark J. Daly, Andre Franke, Miles Parkes, Severine Vermeire, Jeffrey C. Barrett, Judy H. Cho