scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Earlier springs decrease peak summer productivity in North American boreal forests

01 Jun 2013-Environmental Research Letters (Institute of Physics)-Vol. 8, Iss: 2, pp 024027
TL;DR: In this paper, the authors analyzed nearly three decades (1982?2008) of observational records and derived products, including satellite microwave and optical imagery as well as upscaled ecosystem flux observations, to better understand how shifts in seasonality impact hydrology and productivity in the North American boreal forests.
Abstract: In the northern high latitudes, alternative hypotheses with regards to how warming-related shifts in seasonality influence ecosystem productivity exist. Increased plant growth associated with a longer growing season may enhance ecosystem productivity, but shifts to earlier springs may also negatively influence soil moisture status and productivity during the peak of the growing season. Here, we analyzed nearly three decades (1982?2008) of observational records and derived products, including satellite microwave and optical imagery as well as upscaled ecosystem flux observations, to better understand how shifts in seasonality impact hydrology and productivity in the North American boreal forests. We identified a dominant adverse influence of earlier springs on peak summer forest greenness, actual evapotranspiration and productivity at interannual time scales across the drier western and central sections of the North American boreal forests. In the vast regions where this spring onset mechanism operates, ecosystem productivity gains from earlier springs during the early portion of the growing season are effectively cancelled through corresponding losses in the later portion. Our results also indicate that recent decadal shifts towards earlier springs and associated drying in the midst of the growing season over western North American boreal forests may have contributed to the reported declines in summer productivity and increases in tree mortality and fire activity. With projections of accelerated northern high-latitude warming and associated shifts to earlier springs, persistent soil moisture deficits in peak summer may be an effective mechanism for regional-scale boreal forest dieback through their strong influence on productivity, tree mortality and disturbance dynamics.

Content maybe subject to copyright    Report

Citations
More filters
01 Dec 2012
Abstract: We upscaled FLUXNET observations of carbon dioxide, water, and energy fluxes to the global scale using the machine learning technique, model tree ensembles (MTE). We trained MTE to predict site-level gross primary productivity (GPP), terrestrial ecosystem respiration (TER), net ecosystem exchange (NEE), latent energy (LE), and sensible heat (H) based on remote sensing indices, climate and meteorological data, and information on land use. We applied the trained MTEs to generate global flux fields at a 0.5 degrees x 0.5 degrees spatial resolution and a monthly temporal resolution from 1982 to 2008. Cross-validation analyses revealed good performance of MTE in predicting among-site flux variability with modeling efficiencies (MEf) between 0.64 and 0.84, except for NEE (MEf = 0.32). Performance was also good for predicting seasonal patterns (MEf between 0.84 and 0.89, except for NEE (0.64)). By comparison, predictions of monthly anomalies were not as strong (MEf between 0.29 and 0.52). Improved accounting of disturbance and lagged environmental effects, along with improved characterization of errors in the training data set, would contribute most to further reducing uncertainties. Our global estimates of LE (158 +/- 7 J x 10(18) yr(-1)), H (164 +/- 15 J x 10(18) yr(-1)), and GPP (119 +/- 6 Pg C yr(-1)) were similar to independent estimates. Our global TER estimate (96 +/- 6 Pg C yr(-1)) was likely underestimated by 5-10%. Hot spot regions of interannual variability in carbon fluxes occurred in semiarid to semihumid regions and were controlled by moisture supply. Overall, GPP was more important to interannual variability in NEE than TER. Our empirically derived fluxes may be used for calibration and evaluation of land surface process models and for exploratory and diagnostic assessments of the biosphere.

948 citations

Journal ArticleDOI
TL;DR: It is suggested that future studies should primarily focus on using new observation tools to improve the understanding of tropical plant phenology, on improving process-based phenology modeling, and on the scaling of phenology from species to landscape-level.
Abstract: Plant phenology, the annually recurring sequence of plant developmental stages, is important for plant functioning and ecosystem services and their biophysical and biogeochemical feedbacks to the climate system. Plant phenology depends on temperature, and the current rapid climate change has revived interest in understanding and modeling the responses of plant phenology to the warming trend and the consequences thereof for ecosystems. Here, we review recent progresses in plant phenology and its interactions with climate change. Focusing on the start (leaf unfolding) and end (leaf coloring) of plant growing seasons, we show that the recent rapid expansion in ground- and remote sensing- based phenology data acquisition has been highly beneficial and has supported major advances in plant phenology research. Studies using multiple data sources and methods generally agree on the trends of advanced leaf unfolding and delayed leaf coloring due to climate change, yet these trends appear to have decelerated or even reversed in recent years. Our understanding of the mechanisms underlying the plant phenology responses to climate warming is still limited. The interactions between multiple drivers complicate the modeling and prediction of plant phenology changes. Furthermore, changes in plant phenology have important implications for ecosystem carbon cycles and ecosystem feedbacks to climate, yet the quantification of such impacts remains challenging. We suggest that future studies should primarily focus on using new observation tools to improve the understanding of tropical plant phenology, on improving process-based phenology modeling, and on the scaling of phenology from species to landscape-level.

750 citations

Journal ArticleDOI
TL;DR: In the case of an earlier spring and a later autumn, carbon uptake (photosynthesis) increases considerably more than carbon release (respiration) in temperate forests in the eastern US as mentioned in this paper.
Abstract: The timing of life-history events has a strong impact on ecosystems. Now, analysis of the phenology of temperate forests in the eastern US indicates that in the case of an earlier spring and a later autumn, carbon uptake (photosynthesis) increases considerably more than carbon release (respiration).

592 citations

Journal ArticleDOI
TL;DR: In this paper, the temporal correlations between EOS and environmental factors (i.e., temperature, precipitation and insolation), as well as the correlation between spring and autumn phenology, using partial correlation analyses were determined.
Abstract: The timing of the end of the vegetation growing season (EOS) plays a key role in terrestrial ecosystem carbon and nutrient cycles. Autumn phenology is, however, still poorly understood, and previous studies generally focused on few species or were very limited in scale. In this study, we applied four methods to extract EOS dates from NDVI records between 1982 and 2011 for the Northern Hemisphere, and determined the temporal correlations between EOS and environmental factors (i.e., temperature, precipitation and insolation), as well as the correlation between spring and autumn phenology, using partial correlation analyses. Overall, we observed a trend toward later EOS in ~70% of the pixels in Northern Hemisphere, with a mean rate of 0.18 ± 0.38 days yr-1 . Warming preseason temperature was positively associated with the rate of EOS in most of our study area, except for arid/semi-arid regions, where the precipitation sum played a dominant positive role. Interestingly, increased preseason insolation sum might also lead to a later date of EOS. In addition to the climatic effects on EOS, we found an influence of spring vegetation green-up dates on EOS, albeit biome dependent. Our study, therefore, suggests that both environmental factors and spring phenology should be included in the modeling of EOS to improve the predictions of autumn phenology as well as our understanding of the global carbon and nutrient balances.

284 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present results from analyses of a recently developed satellite-sensed normalized difference vegetation index (NDVI) data set for the period July 1981 to December 1999, showing that about 61% of the total vegetated area between 40°N and 70°N in Eurasia shows a persistent increase in growing season NDVI over a broad contiguous swath of land from central Europe through Siberia to the Aldan plateau, where almost 58% (7.3×106 km2) is forests and woodlands.
Abstract: The northern high latitudes have warmed by about 0.8°C since the early 1970s, but not all areas have warmed uniformly [Hansen et al., 1999]. There is warming in most of Eurasia, but the warming rate in the United States is smaller than in most of the world, and a slight cooling is observed in the eastern United States over the past 50 years. These changes beg the question, can we detect the biotic response to temperature changes? Here we present results from analyses of a recently developed satellite-sensed normalized difference vegetation index (NDVI) data set for the period July 1981 to December 1999: (1) About 61% of the total vegetated area between 40°N and 70°N in Eurasia shows a persistent increase in growing season NDVI over a broad contiguous swath of land from central Europe through Siberia to the Aldan plateau, where almost 58% (7.3×106 km2) is forests and woodlands; North America, in comparison, shows a fragmented pattern of change in smaller areas notable only in the forests of the southeast and grasslands of the upper Midwest, (2) A larger increase in growing season NDVI magnitude (12% versus 8%) and a longer active growing season (18 versus 12 days) brought about by an early spring and delayed autumn are observed in Eurasia relative to North America, (3) NDVI decreases are observed in parts of Alaska, boreal Canada, and northeastern Asia, possibly due to temperature-induced drought as these regions experienced pronounced warming without a concurrent increase in rainfall [Barber et al., 2000]. We argue that these changes in NDVI reflect changes in biological activity. Statistical analyses indicate that there is a statistically meaningful relation between changes in NDVI and land surface temperature for vegetated areas between 40°N and 70°N. That is, the temporal changes and continental differences in NDVI are consistent with ground-based measurements of temperature, an important determinant of biological activity. Together, these results suggest a photosynthetically vigorous Eurasia relative to North America during the past 2 decades, possibly driven by temperature and precipitation patterns. Our results are in broad agreement with a recent comparative analysis of 1980s and 1990s boreal and temperate forest inventory data [United Nations, 2000].

1,488 citations

Journal ArticleDOI
TL;DR: This review considers the question "How is the length of a leaf's life span related to environmental factors?" and what are the comparative advantages of the evergreen and deciduous habits and how can adaptive differences be related to distributional patterns and climatic gradients.
Abstract: The adaptive significance of leaf life spans has been examined from several different points of view. Evergreenness has been explained in terms of nutrient conservation (86), improving carbon balance (90), and as a general adaptation to environmental stress (47). In this review, we consider these theories and attempt to synthesize divergent viewpoints. We consider the question "How is the length of a leaf's life span related to environmental factors?" In particular, what are the comparative advantages of the evergreen and deciduous habits and how can adaptive differences be related to distributional patterns and climatic gradients?

1,208 citations


"Earlier springs decrease peak summe..." refers background in this paper

  • ...Second, herbaceous species in the understory of boreal forests may have a fixed lifespan and earlier growth (from earlier springs) would result in earlier senescence (Chabot and Hicks 1982)....

    [...]

Journal ArticleDOI
TL;DR: The first results of the MODIS vegetation continuous field algorithm's global percent tree cover are presented in this article, where a supervised regression tree algorithm is used to estimate tree cover per 500m MODIS pixel.
Abstract: The first results of the Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation continuous field algorithm's global percent tree cover are presented. Percent tree cover per 500-m MODIS pixel is estimated using a supervised regression tree algorithm. Data derived from the MODIS visible bands contribute the most to discriminating tree cover. The results show that MODIS data yield greater spatial detail in the characterization of tree cover compared to past efforts using AVHRR data. This finer-scale depiction should allow for using successive tree cover maps in change detection studies at the global scale. Initial validation efforts show a reasonable relationship between the MODIS-estimated tree cover and tree cover from validation sites.

1,024 citations

Journal ArticleDOI
03 Jan 2008-Nature
TL;DR: Simulation and observations indicate that northern terrestrial ecosystems may currently lose carbon dioxide in response to autumn warming, with a sensitivity of about 0.2 PgC °C-1, offsetting 90% of the increased carbon dioxide uptake during spring.
Abstract: The carbon balance of terrestrial ecosystems is particularly sensitive to climatic changes in autumn and spring(1-4), with spring and autumn temperatures over northern latitudes having risen by about 1.1 degrees C and 0.8 degrees C, respectively, over the past two decades(5). A simultaneous greening trend has also been observed, characterized by a longer growing season and greater photosynthetic activity(6,7). These observations have led to speculation that spring and autumn warming could enhance carbon sequestration and extend the period of net carbon uptake in the future(8). Here we analyse interannual variations in atmospheric carbon dioxide concentration data and ecosystem carbon dioxide fluxes. We find that atmospheric records from the past 20 years show a trend towards an earlier autumn- to- winter carbon dioxide build- up, suggesting a shorter net carbon uptake period. This trend cannot be explained by changes in atmospheric transport alone and, together with the ecosystem flux data, suggest increasing carbon losses in autumn. We use a process- based terrestrial biosphere model and satellite vegetation greenness index observations to investigate further the observed seasonal response of northern ecosystems to autumnal warming. We find that both photosynthesis and respiration increase during autumn warming, but the increase in respiration is greater. In contrast, warming increases photosynthesis more than respiration in spring. Our simulations and observations indicate that northern terrestrial ecosystems may currently lose carbon dioxide in response to autumn warming, with a sensitivity of about 0.2 PgC degrees C-1, offsetting 90% of the increased carbon dioxide uptake during spring. If future autumn warming occurs at a faster rate than in spring, the ability of northern ecosystems to sequester carbon may be diminished earlier than previously suggested(9,10).

1,020 citations

Journal ArticleDOI
08 Jun 2000-Nature
TL;DR: The data show that temperature-induced drought stress has disproportionately affected the most rapidly growing white spruce, suggesting that, under recent climate warming, drought may have been an important factor limiting carbon uptake in a large portion of the North American boreal forest.
Abstract: The extension of growing season at high northern latitudes seems increasingly clear from satellite observations of vegetation extent and duration1,2. This extension is also thought to explain the observed increase in amplitude of seasonal variations in atmospheric CO2 concentration. Increased plant respiration and photosynthesis both correlate well with increases in temperature this century and are therefore the most probable link between the vegetation and CO2 observations3. From these observations1,2, it has been suggested that increases in temperature have stimulated carbon uptake in high latitudes1,2 and for the boreal forest system as a whole4. Here we present multi-proxy tree-ring data (ring width, maximum late-wood density and carbon-isotope composition) from 20 productive stands of white spruce in the interior of Alaska. The tree-ring records show a strong and consistent relationship over the past 90 years and indicate that, in contrast with earlier predictions, radial growth has decreased with increasing temperature. Our data show that temperature-induced drought stress has disproportionately affected the most rapidly growing white spruce, suggesting that, under recent climate warming, drought may have been an important factor limiting carbon uptake in a large portion of the North American boreal forest. If this limitation in growth due to drought stress is sustained, the future capacity of northern latitudes to sequester carbon may be less than currently expected.

1,019 citations

Related Papers (5)