scispace - formally typeset

Journal ArticleDOI

Early multi-wavelength emission from gamma-ray bursts: from gamma-ray to x-ray

31 Jul 2006-New Journal of Physics (IOP Publishing)-Vol. 8, Iss: 7, pp 121-121

AbstractThe study of the early high-energy emission from both long and short gamma-ray bursts (GRBs) has been revolutionized by the Swift mission. The rapid response ofSwiftshows that the non-thermal x-ray emission transitions smoothly from the prompt phase into a decaying phase whatever the details of the light curve. The decay is often categorized by a steep-to-shallow transition suggesting that the prompt emission and the afterglow are two distinct emission components.InthoseGRBswithaninitiallysteeplydecayingx-raylightcurve,we are probably seeing off-axis emission due to termination of intense central engine activity. This phase is usually followed, within the first hour, by a shallow decay, giving the appearance of a late-emission hump. The late-emission hump can last for up to a day, and hence, although faint, is energetically very significant. The energy emitted during the late-emission hump is very likely due to the forward shock being constantly refreshed by either late central engine activity or less relativistic material emitted during the prompt phase. In other GRBs, the early x-ray emission decays gradually following the prompt emission with no evidence for early temporal breaks, and in these bursts the emission may be dominated by classical afterglow emission from the external shock as the relativistic jet is slowed by interaction with the surrounding circum-burst medium. At least half of the GRBs observed by Swift also show erratic x-ray flaring behaviour, usually within the first few hours. The properties of the x-ray flares suggest that they are due to central engine activity. Overall, the observed wide variety of early high-energy phenomena pose a major challenge to GRB models.

Topics: Gamma-ray burst (53%), Afterglow (52%)

...read more

Content maybe subject to copyright    Report

Citations
More filters

Journal ArticleDOI
Abstract: Since the successful launch of NASA's dedicated gamma-ray burst (GRB) mission, Swift, the study of cosmological GRBs has entered a new era. Here I review the rapid observational and theoretical progress in this dynamical research field during the first two-year of the Swift mission, focusing on how observational breakthroughs have revolutionized our understanding of the physical origins of GRBs. Besides summarizing how Swift helps to solve some pre-Swift mysteries, I also list some outstanding problems raised by the Swift observations. An outlook of GRB science in the future, especially in the GLAST era, is briefly discussed.

494 citations


Journal ArticleDOI
Abstract: The origin of the shallow decay segment in Swift XRT light curves remains a puzzle. We analyze the properties of this segment with a sample of 53 long Swift GRBs detected before 2007 February. We show that the distributions of the sample's characteristics are lognormal or normal, and its isotropic X-ray energy (E(iso),X) is linearly correlated with the prompt gamma-ray energy but with a steeper photon spectrum, aside from some X-ray flashes. No significant spectral evolution is observed from this phase to the following phase, and the latter is usually consistent with external shock models, implying that the shallow decay is also of external-shock origin, likely a refreshed external shock. Within the refreshed-shock model, the data are generally consistent with a roughly constant injection luminosity up to the end of this phase, t(b). A positive correlation between Eiso; X and tb also favors this scenario. Among the 13 bursts that have well-sampled optical light curves, six have an optical break around tb and the breaks are consistent with being achromatic. However, the other seven either do not show an optical break or have a break at an epoch different from tb. This raises a concern for the energy injection scenario, suggesting that the optical and X-ray emission may not be the same component, at least for some bursts. There are four significant outliers in the sample, GRBs 060413, 060522, 060607A, and 070110. The shallow decay phase in these bursts is immediately followed by a very steep decay after tb, which is inconsistent with any external-shock model. The optical data for these bursts evolve independently from the X-ray data. These X-ray plateaus likely have an internal origin and demand continuous operation of a long-term central engine. We conclude that the observed shallow decay phase likely has diverse physical origins.

279 citations


Journal ArticleDOI
Abstract: The majority of short gamma-ray bursts (SGRBs) are thought to originate from the merger of compact binary systems collapsing directly to form a black hole. However, it has been proposed that both SGRBs and long gamma-ray bursts (LGRBs) may, on rare occasions, form an unstable millisecond pulsar (magnetar) prior to final collapse. GRB 090515, detected by the Swift satellite was extremely short, with a T90 of 0.036 ± 0.016 s, and had a very low fluence of 2 × 10−8 erg cm−2 and faint optical afterglow. Despite this, the 0.3–10 keV flux in the first 200 s was the highest observed for an SGRB by the Swift X-ray Telescope (XRT). The X-ray light curve showed an unusual plateau and steep decay, becoming undetectable after ∼500 s. This behaviour is similar to that observed in some long bursts proposed to have magnetars contributing to their emission. In this paper, we present the Swift observations of GRB 090515 and compare it to other gamma-ray bursts (GRBs) in the Swift sample. Additionally, we present optical observations from Gemini, which detected an afterglow of magnitude 26.4 ± 0.1 at T+ 1.7 h after the burst. We discuss potential causes of the unusual 0.3–10 keV emission and suggest it might be energy injection from an unstable millisecond pulsar. Using the duration and flux of the plateau of GRB 090515, we place constraints on the millisecond pulsar spin period and magnetic field.

235 citations


Journal ArticleDOI
Abstract: The Swift XRT data for 179 GRBs (050124 to 070129) and the optical afterglow data for 57 pre- and post-Swift GRBs are analyzed to explore whether the observed breaks in the afterglow light curves can be interpreted as jet breaks, as well as their implications for jet energetics. We find that no burst is included in our "Platinum" sample, in which the data fully satisfy the jet break criteria. By relaxing one or more of the requirements for a jet break, candidates to various degrees are identified. In the X-ray band, 42 of 103 well-sampled X-ray light curves have a decay slope greater than or similar to 1.5 in the postbreak segment (the "Bronze" sample), and 27 of these also satisfy the closure relations of the forward-shock models ("Silver" sample). The numbers of "Bronze" and "Silver" candidates in the optical light curves are 27 and 23, respectively. The X-ray break time is earlier than that in the optical bands. Among 13 bursts having both optical and X-ray light curves, only seven have an achromatic break, and even in these cases, only in one band do the data satisfy the closure relations ("Gold" sample). These results raise concerns about interpreting the breaks as jet breaks and further inferring GRB energetics. Assuming that the "Silver" and "Gold" breaks are jet breaks, we derive jet opening angles (theta(j)) and kinetic energies (E(K)) or lower limits on them and find that the EK distribution is much more scattered than the pre-Swift sample, but a tentative anticorrelation between theta(j) and E(K,iso) is found, indicating that the E(K) could still be quasi-universal.

222 citations


Journal ArticleDOI
Abstract: We consider the long-term evolution of debris following the tidal disruption of compact stars in the context of short gamma ray bursts. The initial encounter impulsively creates a hot, dense, neutrino-cooled disk capable of powering the prompt emission. After a long delay, we find that powerful winds are launched from the surface of the disk, driven by the recombination of free nucleons into α-particles. The associated energy release depletes the mass supply and eventually shuts off activity of the central engine. As a result, the luminosity and mass accretion rate deviate from the earlier self-similar behavior expected for an isolated ring with efficient cooling. This then enables a secondary episode of delayed activity to become prominent as an observable signature, when material in the tidal tails produced by the initial encounter returns to the vicinity of the central object. The timescale of the new accretion event can reach tens of seconds to minutes, depending on the details of the system. The associated energies and timescales are consistent with those occurring in X-ray flares.

143 citations


References
More filters

Journal ArticleDOI
20 Aug 2004
Abstract: The Swift mission, scheduled for launch in 2004, is a multiwavelength observatory for gamma-ray burst (GRB) astronomy. It is a first-of-its-kind autonomous rapid-slewing satellite for transient astronomy and pioneers the way for future rapid-reaction and multiwavelength missions. It will be far more powerful than any previous GRB mission, observing more than 100 bursts yr � 1 and performing detailed X-ray and UV/optical afterglow observations spanning timescales from 1 minute to several days after the burst. The objectives are to (1) determine the origin of GRBs, (2) classify GRBs and search for new types, (3) study the interaction of the ultrarelativistic outflows of GRBs with their surrounding medium, and (4) use GRBs to study the early universe out to z >10. The mission is being developed by a NASA-led international collaboration. It will carry three instruments: a newgeneration wide-field gamma-ray (15‐150 keV) detector that will detect bursts, calculate 1 0 ‐4 0 positions, and trigger autonomous spacecraft slews; a narrow-field X-ray telescope that will give 5 00 positions and perform spectroscopy in the 0.2‐10 keV band; and a narrow-field UV/optical telescope that will operate in the 170‐ 600 nm band and provide 0B3 positions and optical finding charts. Redshift determinations will be made for most bursts. In addition to the primary GRB science, the mission will perform a hard X-ray survey to a sensitivity of � 1m crab (� 2;10 � 11 ergs cm � 2 s � 1 in the 15‐150 keV band), more than an order of magnitude better than HEAO 1 A-4. A flexible data and operations system will allow rapid follow-up observations of all types of

3,401 citations


Journal ArticleDOI
Abstract: The recently discovered gamma-ray burst afterglow is believed to be described reasonably well by synchrotron emission from a decelerating relativistic shell that collides with an external medium. To compare theoretical models with afterglow observations, we calculate here the broadband spectrum and corresponding light curve of synchrotron radiation from a power-law distribution of electrons in an expanding relativistic shock. Both the spectrum and the light curve consist of several power-law segments with related indices. The light curve is constructed under two limiting models for the hydrodynamic evolution of the shock: fully adiabatic and fully radiative. We give explicit relations between the spectral index and the temporal power-law index. Future observations should be able to distinguish between the possible behaviors and determine the type of solution.

2,164 citations


Journal ArticleDOI
Abstract: We studied the time-averaged gamma-ray burst spectra accumulated by the spectroscopy detectors of the Burst and Transient Source Experiment. The spectra are described well at low energy by a power-law continuum with an exponential cutoff and by a steeper power law at high energy. However, the spectral parameters vary from burst to burst with no universal values. The break in the spectrum ranges from below 100 keV to more than 1 MeV, but peaks below 200 keV with only a small fraction of the spectra breaking above 400 keV; it is therefore unlikely that a majority of the burst spectra are shaped directly by pair processes, unless bursts originate from a broad redshift range. The correlations among burst parameters do not fulfill the predictions of the cosmological models of burst origin. No correlations with burst morphology or the spatial distribution were found. We demonstrate the importance of using a complete spectral description even if a partial description (e.g., a model without a high-energy tail) is statistically satisfactory.

2,140 citations


Journal ArticleDOI
Abstract: The Swift Gamma-Ray Explorer is designed to make prompt multiwavelength observations of Gamma-Ray Bursts (GRBs) and GRB afterglows. The X-ray Telescope (XRT) enables Swift to determine GRB positions with a few arcseconds accuracy within 100 seconds of the burst onset. The XRT utilizes a mirror set built for JET-X and an XMM/EPIC MOS CCD detector to provide a sensitive broad-band (0.2-10 keV) X-ray imager with effective area of > 120 cm^2 at 1.5 keV, field of view of 23.6 x 23.6 arcminutes, and angular resolution of 18 arcseconds (HPD). The detection sensitivity is 2x10^-14 erg cm^-2 s^-1 in 10^4 seconds. The instrument is designed to provide automated source detection and position reporting within 5 seconds of target acquisition. It can also measure the redshifts of GRBs with Fe line emission or other spectral features. The XRT operates in an auto-exposure mode, adjusting the CCD readout mode automatically to optimize the science return for each frame as the source intensity fades. The XRT will measure spectra and lightcurves of the GRB afterglow beginning about a minute after the burst and will follow each burst for days or weeks.

2,104 citations


Journal ArticleDOI
Abstract: Using a two-dimensional hydrodynamics code (PROMETHEUS), we explore the continued evolution of rotating helium stars, Mα 10 M☉, in which iron-core collapse does not produce a successful outgoing shock but instead forms a black hole of 2-3 M☉. The model explored in greatest detail is the 14 M☉ helium core of a 35 M☉ main-sequence star. The outcome is sensitive to the angular momentum. For j16 ≡ j/(1016 cm2 s-1) 3, material falls into the black hole almost uninhibited. No outflows are expected. For j16 20, the infalling matter is halted by centrifugal force outside 1000 km where neutrino losses are negligible. The equatorial accretion rate is very low, and explosive oxygen burning may power a weak equatorial explosion. For 3 j16 20, however, a reasonable value for such stars, a compact disk forms at a radius at which the gravitational binding energy can be efficiently radiated as neutrinos or converted to beamed outflow by magnetohydrodynamical (MHD) processes. These are the best candidates for producing gamma-ray bursts (GRBs). Here we study the formation of such a disk, the associated flow patterns, and the accretion rate for disk viscosity parameter α ≈ 0.001 and 0.1. Infall along the rotational axis is initially uninhibited, and an evacuated channel opens during the first few seconds. Meanwhile the black hole is spun up by the accretion (to a ≈ 0.9), and energy is dissipated in the disk by MHD processes and radiated by neutrinos. For the α = 0.1 model, appreciable energetic outflows develop between polar angles of 30° and 45°. These outflows, powered by viscous dissipation in the disk, have an energy of up to a few times 1051 ergs and a mass ~1 M☉ and are rich in 56Ni. They constitute a supernova-like explosion by themselves. Meanwhile accretion through the disk is maintained for approximately 10-20 s but is time variable (±30%) because of hydrodynamical instabilities at the outer edge in a region where nuclei are experiencing photodisintegration. Because the efficiency of neutrino energy deposition is sensitive to the accretion rate, this instability leads to highly variable energy deposition in the polar regions. Some of this variability, which has significant power at 50 ms and overtones, may persist in the time structure of the burst. During the time followed, the average accretion rate for the standard α = 0.1 and j16 = 10 model is 0.07 M☉ s-1. The total energy deposited along the rotational axes by neutrino annihilation is (1-14) × 1051 ergs, depending upon the evolution of the Kerr parameter and uncertain neutrino efficiencies. Simulated deposition of energy in the polar regions, at a constant rate of 5 × 1050 ergs s-1 per pole, results in strong relativistic outflow jets beamed to about 1% of the sky. These jets may be additionally modulated by instabilities in the sides of the "nozzle" through which they flow. The jets blow aside the accreting material, remain highly focused, and are capable of penetrating the star in ~10 s. After the jet breaks through the surface of the star, highly relativistic flow can emerge. Because of the sensitivity of the mass ejection and jets to accretion rate, angular momentum, and disk viscosity, and the variation of observational consequences with viewing angle, a large range of outcomes is possible, ranging from bright GRBs like GRB 971214 to faint GRB-supernovae like SN 1998bw. X-ray precursors are also possible as the jet first breaks out of the star. While only a small fraction of supernovae make GRBs, we predict that collapsars will always make supernovae similar to SN 1998bw. However, hard, energetic GRBs shorter than a few seconds will be difficult to produce in this model and may require merging neutron stars and black holes for their explanation.

2,066 citations


Related Papers (5)