scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Earth-Abundant Iron Diboride (FeB2) Nanoparticles as Highly Active Bifunctional Electrocatalysts for Overall Water Splitting

01 Sep 2017-Advanced Energy Materials (John Wiley & Sons, Ltd)-Vol. 7, Iss: 17, pp 1700513
TL;DR: In this article, the authors reported that FeB2 nanoparticles, prepared by a facile chemical reduction of Fe2+ using LiBH4 in an organic solvent, are a superb bifunctional electrocatalyst for overall water splitting.
Abstract: Developing efficient, durable, and earth-abundant electrocatalysts for both hydrogen and oxygen evolution reactions is important for realizing large-scale water splitting. The authors report that FeB2 nanoparticles, prepared by a facile chemical reduction of Fe2+ using LiBH4 in an organic solvent, are a superb bifunctional electrocatalyst for overall water splitting. The FeB2 electrode delivers a current density of 10 mA cm−2 at overpotentials of 61 mV for hydrogen evolution reaction (HER) and 296 mV for oxygen evolution reaction (OER) in alkaline electrolyte with Tafel slopes of 87.5 and 52.4 mV dec−1, respectively. The electrode can sustain the HER at an overpotential of 100 mV for 24 h and OER for 1000 cyclic voltammetry cycles with negligible degradation. Density function theory calculations demonstrate that the boron-rich surface possesses appropriate binding energy for chemisorption and desorption of hydrogen-containing intermediates, thus favoring the HER process. The excellent OER activity of FeB2 is ascribed to the formation of a FeOOH/FeB2 heterojunction during water oxidation. An alkaline electrolyzer is constructed using two identical FeB2-NF electrodes as both anode and cathode, which can achieve a current density of 10 mA cm−2 at 1.57 V for overall water splitting with a faradaic efficiency of nearly 100%, rivalling the integrated state-of-the-art Pt/C and RuO2/C.
Citations
More filters
Journal ArticleDOI
TL;DR: The fundamentals of HER are summarized and the recent state-of-the-art advances in the low-cost and high-performance catalysts based on noble and non-noble metals, as well as metal-free HER electrocatalysts are reviewed.
Abstract: Hydrogen fuel is considered as the cleanest renewable resource and the primary alternative to fossil fuels for future energy supply. Sustainable hydrogen generation is the major prerequisite to realize future hydrogen economy. The electrocatalytic hydrogen evolution reaction (HER), as the vital step of water electrolysis to H2 production, has been the subject of extensive study over the past decades. In this comprehensive review, we first summarize the fundamentals of HER and review the recent state-of-the-art advances in the low-cost and high-performance catalysts based on noble and non-noble metals, as well as metal-free HER electrocatalysts. We systemically discuss the insights into the relationship among the catalytic activity, morphology, structure, composition, and synthetic method. Strategies for developing an effective catalyst, including increasing the intrinsic activity of active sites and/or increasing the number of active sites, are summarized and highlighted. Finally, the challenges, perspectives, and research directions of HER electrocatalysis are featured.

1,387 citations

Journal ArticleDOI
TL;DR: In this paper, a free-standing electrocatalyst in the form of vertically oriented Fe-doped Ni3S2 nanosheet array grown on three-dimensional (3D) Ni foam was fabricated, which presented a high activity and durability for both hydrogen evolution reaction and oxygen evolution reaction with earth-abundant elements.
Abstract: The development of bifunctional electrocatalysts with high performance for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) with earth-abundant elements is still a challenge in electrochemical water splitting technology. Herein, we fabricated a free-standing electrocatalyst in the form of vertically oriented Fe-doped Ni3S2 nanosheet array grown on three-dimensional (3D) Ni foam (Fe-Ni3S2/NF), which presented a high activity and durability for both HER and OER in alkaline media. On the basis of systematic experiments and calculation, the Fe-doping was evidenced to increase the electrochemical surface area, improve the water adsorption ability, and optimize the hydrogen adsorption energy of Ni3S2, which resulted in the enhancement of HER activity on Fe-Ni3S2/NF. Moreover, metal sites of Fe-Ni3S2/NF were proved to play a significant role in the HER process. During the catalysis of OER, the formation of Ni–Fe (oxy)hydroxide was observed on the near-surface section of Fe-Ni3S2/NF, and...

444 citations

Journal ArticleDOI
TL;DR: In this paper, a review of transition metal-based catalysts for the hydrogen evolution reaction (HER) is presented, and the challenges for the future development of novel catalysts are also analyzed.
Abstract: With the increasing demands in energy consumption and increasing environmental concerns, it is of vital significance for developing renewable and clean energy sources to substitute traditional fossil fuels. As an outstanding candidate, hydrogen is recognized as a green energy carrier due to its high gravimetric energy density, zero carbon footprints, and earth-abundance. Currently, water splitting in alkaline electrolytes represents one of the most promising methods for sustainable hydrogen production, and the key challenge lies in the development of high-performance electrocatalysts for the hydrogen evolution reaction (HER). Given the rapid advances in the design and development of efficient catalysts towards the alkaline HER, especially capable transition metal (TM)-based materials, this review aims to summarise recent progress in the theoretical understanding of the alkaline HER and TM-based electrocatalysts. TM-based catalysts classified by their different anionic compositions (metals, alloys, oxides, hydroxides, sulfides, selenides, tellurides, nitrides, phosphides, carbides, and borides) are comprehensively showcased. Special attention is given to mainstream strategies that can improve the catalytic properties of each category, as well as the underlying structure–activity regimes. Additionally, the challenges for the future development of novel catalysts are also analyzed.

418 citations

Journal ArticleDOI
TL;DR: In this article, a general description about water splitting is presented to understand the reaction mechanism and proposed scaling relations toward activities, and key stability issues for Ru-based materials are further given.
Abstract: As a highly appealing technology for hydrogen generation, water electrolysis including oxygen evolution reaction (OER) at the anode and hydrogen evolution reaction (HER) at the cathode largely depends on the availability of efficient electrocatalysts. Accordingly, over the past years, much effort has been made to develop various electrocatalysts with superior performance and reduced cost. Among them, ruthenium (Ru)-based materials for OER and HER are very promising because of their prominent catalytic activity, pH-universal application, the cheapest price among the precious metal family, and so on. Herein, recent advances in this hot research field are comprehensively reviewed. A general description about water splitting is presented to understand the reaction mechanism and proposed scaling relations toward activities, and key stability issues for Ru-based materials are further given. Subsequently, various Ru-involving electrocatalysts are introduced and classified into different groups for improving or optimizing electrocatalytic properties, with a special focus on several significant bifunctional electrocatalysts along with a simulated water electrolyzer. Finally, a perspective on the existing challenges and future progress of Ru-based catalysts toward OER and HER is provided. The main aim here is to shed some light on the design and construction of emerging catalysts for energy storage and conversion technologies.

388 citations

References
More filters
Journal ArticleDOI
TL;DR: The biggest challenge is whether or not the goals need to be met to fully utilize solar energy for the global energy demand can be met in a costeffective way on the terawatt scale.
Abstract: Energy harvested directly from sunlight offers a desirable approach toward fulfilling, with minimal environmental impact, the need for clean energy. Solar energy is a decentralized and inexhaustible natural resource, with the magnitude of the available solar power striking the earth’s surface at any one instant equal to 130 million 500 MW power plants.1 However, several important goals need to be met to fully utilize solar energy for the global energy demand. First, the means for solar energy conversion, storage, and distribution should be environmentally benign, i.e. protecting ecosystems instead of steadily weakening them. The next important goal is to provide a stable, constant energy flux. Due to the daily and seasonal variability in renewable energy sources such as sunlight, energy harvested from the sun needs to be efficiently converted into chemical fuel that can be stored, transported, and used upon demand. The biggest challenge is whether or not these goals can be met in a costeffective way on the terawatt scale.2

8,037 citations

Journal ArticleDOI
TL;DR: This review highlights the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER), and summarizes some important examples showing that non-Pt HER electrocatsalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalyst.
Abstract: Sustainable hydrogen production is an essential prerequisite of a future hydrogen economy. Water electrolysis driven by renewable resource-derived electricity and direct solar-to-hydrogen conversion based on photochemical and photoelectrochemical water splitting are promising pathways for sustainable hydrogen production. All these techniques require, among many things, highly active noble metal-free hydrogen evolution catalysts to make the water splitting process more energy-efficient and economical. In this review, we highlight the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER). We review several important kinds of heterogeneous non-precious metal electrocatalysts, including metal sulfides, metal selenides, metal carbides, metal nitrides, metal phosphides, and heteroatom-doped nanocarbons. In the discussion, emphasis is given to the synthetic methods of these HER electrocatalysts, the strategies of performance improvement, and the structure/composition-catalytic activity relationship. We also summarize some important examples showing that non-Pt HER electrocatalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalysts.

4,351 citations

Journal ArticleDOI
TL;DR: The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward a series of key clean energy conversion reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties.
Abstract: A fundamental change has been achieved in understanding surface electrochemistry due to the profound knowledge of the nature of electrocatalytic processes accumulated over the past several decades and to the recent technological advances in spectroscopy and high resolution imaging. Nowadays one can preferably design electrocatalysts based on the deep theoretical knowledge of electronic structures, via computer-guided engineering of the surface and (electro)chemical properties of materials, followed by the synthesis of practical materials with high performance for specific reactions. This review provides insights into both theoretical and experimental electrochemistry toward a better understanding of a series of key clean energy conversion reactions including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The emphasis of this review is on the origin of the electrocatalytic activity of nanostructured catalysts toward the aforementioned reactions by correlating the apparent electrode performance with their intrinsic electrochemical properties. Also, a rational design of electrocatalysts is proposed starting from the most fundamental aspects of the electronic structure engineering to a more practical level of nanotechnological fabrication.

3,918 citations

Journal ArticleDOI
22 Aug 2008-Science
TL;DR: A catalyst that forms upon the oxidative polarization of an inert indium tin oxide electrode in phosphate-buffered water containing cobalt (II) ions is reported that not only forms in situ from earth-abundant materials but also operates in neutral water under ambient conditions.
Abstract: The utilization of solar energy on a large scale requires its storage. In natural photosynthesis, energy from sunlight is used to rearrange the bonds of water to oxygen and hydrogen equivalents. The realization of artificial systems that perform "water splitting" requires catalysts that produce oxygen from water without the need for excessive driving potentials. Here we report such a catalyst that forms upon the oxidative polarization of an inert indium tin oxide electrode in phosphate-buffered water containing cobalt (II) ions. A variety of analytical techniques indicates the presence of phosphate in an approximate 1:2 ratio with cobalt in this material. The pH dependence of the catalytic activity also implicates the hydrogen phosphate ion as the proton acceptor in the oxygen-producing reaction. This catalyst not only forms in situ from earth-abundant materials but also operates in neutral water under ambient conditions.

3,695 citations

Journal ArticleDOI
TL;DR: The Scope of Review: Large-Scale Centralized Energy Storage, Chemical Energy Storage: Solar Fuels, and Capacitors 6486 5.1.2.
Abstract: 1. Setting the Scope of the Challenge 6474 1.1. The Need for Solar Energy Supply and Storage 6474 1.2. An Imperative for Discovery Research 6477 1.3. Scope of Review 6478 2. Large-Scale Centralized Energy Storage 6478 2.1. Pumped Hydroelectric Energy Storage (PHES) 6479 2.2. Compressed Air Energy Storage (CAES) 6480 3. Smaller Scale Grid and Distributed Energy Storage 6481 3.1. Flywheel Energy Storage (FES) 6481 3.2. Superconducting Magnetic Energy Storage 6482 4. Chemical Energy Storage: Electrochemical 6482 4.1. Batteries 6482 4.1.1. Lead-Acid Batteries 6483 4.1.2. Alkaline Batteries 6484 4.1.3. Lithium-Ion Batteries 6484 4.1.4. High-Temperature Sodium Batteries 6484 4.1.5. Liquid Flow Batteries 6485 4.1.6. Metal-Air Batteries 6485 4.2. Capacitors 6485 5. Chemical Energy Storage: Solar Fuels 6486 5.1. Solar Fuels in Nature 6486 5.2. Artificial Photosynthesis and General Considerations of Water Splitting 6486

2,570 citations