ECG data compression techniques-a unified approach
01 Apr 1990-IEEE Transactions on Biomedical Engineering (IEEE Trans Biomed Eng)-Vol. 37, Iss: 4, pp 329-343
...read more
Citations
More filters
[...]
TL;DR: In this review, the emerging role of the wavelet transform in the interrogation of the ECG is discussed in detail, where both the continuous and the discrete transform are considered in turn.
Abstract: The wavelet transform has emerged over recent years as a powerful time-frequency analysis and signal coding tool favoured for the interrogation of complex nonstationary signals. Its application to biosignal processing has been at the forefront of these developments where it has been found particularly useful in the study of these, often problematic, signals: none more so than the ECG. In this review, the emerging role of the wavelet transform in the interrogation of the ECG is discussed in detail, where both the continuous and the discrete transform are considered in turn.
713 citations
Cites methods from "ECG data compression techniques-a u..."
[...]
[...]
TL;DR: This paper quantifies the potential of the emerging compressed sensing (CS) signal acquisition/compression paradigm for low-complexity energy-efficient ECG compression on the state-of-the-art Shimmer WBSN mote and shows that CS represents a competitive alternative to state- of- the-art digital wavelet transform (DWT)-basedECG compression solutions in the context of WBSn-based ECG monitoring systems.
Abstract: Wireless body sensor networks (WBSN) hold the promise to be a key enabling information and communications technology for next-generation patient-centric telecardiology or mobile cardiology solutions. Through enabling continuous remote cardiac monitoring, they have the potential to achieve improved personalization and quality of care, increased ability of prevention and early diagnosis, and enhanced patient autonomy, mobility, and safety. However, state-of-the-art WBSN-enabled ECG monitors still fall short of the required functionality, miniaturization, and energy efficiency. Among others, energy efficiency can be improved through embedded ECG compression, in order to reduce airtime over energy-hungry wireless links. In this paper, we quantify the potential of the emerging compressed sensing (CS) signal acquisition/compression paradigm for low-complexity energy-efficient ECG compression on the state-of-the-art Shimmer WBSN mote. Interestingly, our results show that CS represents a competitive alternative to state-of-the-art digital wavelet transform (DWT)-based ECG compression solutions in the context of WBSN-based ECG monitoring systems. More specifically, while expectedly exhibiting inferior compression performance than its DWT-based counterpart for a given reconstructed signal quality, its substantially lower complexity and CPU execution time enables it to ultimately outperform DWT-based ECG compression in terms of overall energy efficiency. CS-based ECG compression is accordingly shown to achieve a 37.1% extension in node lifetime relative to its DWT-based counterpart for “good” reconstruction quality.
648 citations
[...]
TL;DR: This statement examines the relation of the resting ECG to its technology to establish standards that will improve the accuracy and usefulness of the ECG in practice and to recommend recommendations for ECG standards.
Abstract: This statement provides a concise list of diagnostic terms for ECG interpretation that can be shared by students, teachers, and readers of electrocardiography. This effort was motivated by the existence of multiple automated diagnostic code sets containing imprecise and overlapping terms. An intended outcome of this statement list is greater uniformity of ECG diagnosis and a resultant improvement in patient care. The lexicon includes primary diagnostic statements, secondary diagnostic statements, modifiers, and statements for the comparison of ECGs. This diagnostic lexicon should be reviewed and updated periodically.
554 citations
[...]
TL;DR: A wavelet electrocardiogram (ECG) data codec based on the set partitioning in hierarchical trees (SPIHT) compression algorithm is proposed and is significantly more efficient in compression and in computation than previously proposed ECG compression schemes.
Abstract: A wavelet electrocardiogram (ECG) data codec based on the set partitioning in hierarchical trees (SPIHT) compression algorithm is proposed in this paper. The SPIHT algorithm (A. Said and W.A. Pearlman, IEEE Trans. Ccts. Syst. II, vol. 6, p. 243-50, 1996) has achieved notable success in still image coding. The authors modified the algorithm for the one-dimensional case and applied it to compression of ECG data. Experiments on selected records from the MIT-BIH arrhythmia database revealed that the proposed codec is significantly more efficient in compression and in computation than previously proposed ECG compression schemes. The coder also attains exact bit rate control and generates a bit stream progressive in quality or rate.
493 citations
[...]
TL;DR: This statement examines the relation of the resting ECG to its technology to establish standards that will improve the accuracy and usefulness of the ECG in practice and to recommend recommendations for ECG standards.
Abstract: This statement examines the relation of the resting ECG to its technology. Its purpose is to foster understanding of how the modern ECG is derived and displayed and to establish standards that will improve the accuracy and usefulness of the ECG in practice. Derivation of representative waveforms and measurements based on global intervals are described. Special emphasis is placed on digital signal acquisition and computer-based signal processing, which provide automated measurements that lead to computer-generated diagnostic statements. Lead placement, recording methods, and waveform presentation are reviewed. Throughout the statement, recommendations for ECG standards are placed in context of the clinical implications of evolving ECG technology.
486 citations
References
More filters
[...]
TL;DR: This final installment of the paper considers the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now.
Abstract: In this final installment of the paper we consider the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now. To a considerable extent the continuous case can be obtained through a limiting process from the discrete case by dividing the continuum of messages and signals into a large but finite number of small regions and calculating the various parameters involved on a discrete basis. As the size of the regions is decreased these parameters in general approach as limits the proper values for the continuous case. There are, however, a few new effects that appear and also a general change of emphasis in the direction of specialization of the general results to particular cases.
60,029 citations
[...]
TL;DR: A minimum-redundancy code is one constructed in such a way that the average number of coding digits per message is minimized.
Abstract: An optimum method of coding an ensemble of messages consisting of a finite number of members is developed. A minimum-redundancy code is one constructed in such a way that the average number of coding digits per message is minimized.
5,013 citations
[...]
TL;DR: This paper gives an exposition of linear prediction in the analysis of discrete signals as a linear combination of its past values and present and past values of a hypothetical input to a system whose output is the given signal.
Abstract: This paper gives an exposition of linear prediction in the analysis of discrete signals The signal is modeled as a linear combination of its past values and present and past values of a hypothetical input to a system whose output is the given signal In the frequency domain, this is equivalent to modeling the signal spectrum by a pole-zero spectrum The major part of the paper is devoted to all-pole models The model parameters are obtained by a least squares analysis in the time domain Two methods result, depending on whether the signal is assumed to be stationary or nonstationary The same results are then derived in the frequency domain The resulting spectral matching formulation allows for the modeling of selected portions of a spectrum, for arbitrary spectral shaping in the frequency domain, and for the modeling of continuous as well as discrete spectra This also leads to a discussion of the advantages and disadvantages of the least squares error criterion A spectral interpretation is given to the normalized minimum prediction error Applications of the normalized error are given, including the determination of an "optimal" number of poles The use of linear prediction in data compression is reviewed For purposes of transmission, particular attention is given to the quantization and encoding of the reflection (or partial correlation) coefficients Finally, a brief introduction to pole-zero modeling is given
4,096 citations
[...]
TL;DR: The state of the art in data compression is arithmetic coding, not the better-known Huffman method, which gives greater compression, is faster for adaptive models, and clearly separates the model from the channel encoding.
Abstract: The state of the art in data compression is arithmetic coding, not the better-known Huffman method. Arithmetic coding gives greater compression, is faster for adaptive models, and clearly separates the model from the channel encoding.
3,069 citations
[...]
TL;DR: The utility and effectiveness of these transforms are evaluated in terms of some standard performance criteria such as computational complexity, variance distribution, mean-square error, correlated rms error, rate distortion, data compression, classification error, and digital hardware realization.
Abstract: A tutorial-review paper on discrete orthogonal transforms and their applications in digital signal and image (both monochrome and color) processing is presented. Various transforms such as discrete Fourier, discrete cosine, Walsh-Hadamard, slant, Haar, discrete linear basis, Hadamard-Haar, rapid, lower triangular, generalized Haar, slant Haar and Karhunen-Loeve are defined and developed. Pertinent properties of these transforms such as power spectra, cyclic and dyadic convolution and correlation are outlined. Efficient algorithms for fast implementation of these transforms based on matrix partitioning or matrix factoring are presented. The application of these transforms in speech and image processing, spectral analysis, digital filtering (linear, nonlinear, optimal and suboptimal), nonlinear systems analysis, spectrography, digital holography, industrial testing, spectrometric imaging, feature selection, and patter recognition is presented. The utility and effectiveness of these transforms are evaluated in terms of some standard performance criteria such as computational complexity, variance distribution, mean-square error, correlated rms error, rate distortion, data compression, classification error, and digital hardware realization.
926 citations