scispace - formally typeset
Search or ask a question
Journal ArticleDOI

ECG data compression techniques-a unified approach

TL;DR: The theoretical bases behind the direct ECG data compression schemes are presented and classified into three categories: tolerance-comparison compression, DPCM, and entropy coding methods and a framework for evaluation and comparison of ECG compression schemes is presented.
Abstract: Electrocardiogram (ECG) compression techniques are compared, and a unified view of these techniques is established. ECG data compression schemes are presented in two major groups: direct data compression and transformation methods. The direct data compression techniques are ECG differential pulse code modulation (DPCM) and entropy coding, AZTEC, Turning-point, CORTES, Fan and SAPA algorithms, peak-picking, and cycle-to-cycle compression methods. The transformation methods include Fourier, Walsh, and Karhunen-Loeve transforms. The theoretical bases behind the direct ECG data compression schemes are presented and classified into three categories: tolerance-comparison compression, DPCM, and entropy coding methods. A framework for evaluation and comparison of ECG compression schemes is presented. >
Citations
More filters
Journal ArticleDOI
TL;DR: Pilot data from a blind evaluation of compressed ECG's by cardiologists suggest that the clinically useful information present in original ECG signals is preserved by 8:1 compression, and in most cases 16:1 compressed ECGs are clinically useful.
Abstract: Wavelets and wavelet packets have recently emerged as powerful tools for signal compression. Wavelet and wavelet packet-based compression algorithms based on embedded zerotree wavelet (EZW) coding are developed for electrocardiogram (ECG) signals, and eight different wavelets are evaluated for their ability to compress Holter ECG data. Pilot data from a blind evaluation of compressed ECG's by cardiologists suggest that the clinically useful information present in original ECG signals is preserved by 8:1 compression, and in most cases 16:1 compressed ECG's are clinically useful.

445 citations

Journal ArticleDOI
TL;DR: The correlation between the proposed WDD measure and the MOS test measure (MOS/sub error/) was found superior to the correlation betweenThe popular PRD measure andThe MOS/ sub error/.
Abstract: In this paper, a new distortion measure for electrocardiogram (ECG) signal compression, called weighted diagnostic distortion (WDD) is introduced. The WDD measure is designed for comparing the distortion between original ECG signal and reconstructed ECG signal (after compression). The WDD is based on PQRST complex diagnostic features (such as P wave duration, QT interval, T shape, ST elevation) of the original ECG signal and the reconstructed one. Unlike other conventional distortion measures [e.g. percentage root mean square (rms) difference, or PRD], the WDD contains direct diagnostic information and thus is more meaningful and useful. Four compression algorithms were implemented (AZTEC, SAPA2, LTP, ASEC) in order to evaluate the WDD. A mean opinion score (MOS) test was applied to test the quality of the reconstructed signals and to compare the quality measure (MOS/sub error/) with the proposed WDD measure and the popular PRD measure. The evaluators in the WIGS test were three independent expert cardiologists, who studied the reconstructed ECG signals in a blind and a semiblind tests. The correlation between the proposed WDD measure and the MOS test measure (MOS/sub error/) was found superior to the correlation between the popular PRD measure and the MOS/sub error/.

393 citations

Journal ArticleDOI
TL;DR: The extraction of fetal electrocardiogram (ECG) from the composite maternal ECG signal obtained from the abdominal lead is discussed, and the proposed method employs singular value decomposition (SVD) and analysis based on the singular value ratio (SVR) spectrum.
Abstract: The extraction of fetal electrocardiogram (ECG) from the composite maternal ECG signal obtained from the abdominal lead is discussed. The proposed method employs singular value decomposition (SVD) and analysis based on the singular value ratio (SVR) spectrum. The maternal ECG (M-ECG) and the fetal ECG (F-ECG) components are identified in terms of the SV-decomposed modes of the appropriately configured data matrices, and elimination of the M-ECG and determination of F-ECG are achieved through selective separation of the SV-decomposed components. The unique feature of the method is that only one composite maternal ECG signal is required to determine the P-ECG component. The method is numerically robust and computationally efficient.

304 citations

Book
17 Jun 2008
TL;DR: The Encyclopedia of Healthcare Information Systems provides an extensive and rich compilation of international research, discussing the use, adoption, design, and diffusion of information communication technologies (ICTs) in healthcare, including the role of ICTs in the future of healthcare delivery.
Abstract: Healthcare, a vital industry that touches most of us in our lives, faces major challenges in demographics, technology, and finance. Longer life expectancy and an aging population, technological advancements that keep people younger and healthier, and financial issues are a constant strain on healthcare organizations' resources and management. Focusing on the organization's ability to improve access, quality, and value of care to the patient may present possible solutions to these challenges.""The Encyclopedia of Healthcare Information Systems"" provides an extensive and rich compilation of international research, discussing the use, adoption, design, and diffusion of information communication technologies (ICTs) in healthcare, including the role of ICTs in the future of healthcare delivery; access, quality, and value of healthcare; nature and evaluation of medical technologies; ethics and social implications; and medical information management.

294 citations

References
More filters
Journal ArticleDOI
TL;DR: This final installment of the paper considers the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now.
Abstract: In this final installment of the paper we consider the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now. To a considerable extent the continuous case can be obtained through a limiting process from the discrete case by dividing the continuum of messages and signals into a large but finite number of small regions and calculating the various parameters involved on a discrete basis. As the size of the regions is decreased these parameters in general approach as limits the proper values for the continuous case. There are, however, a few new effects that appear and also a general change of emphasis in the direction of specialization of the general results to particular cases.

65,425 citations

Journal ArticleDOI
01 Sep 1952
TL;DR: A minimum-redundancy code is one constructed in such a way that the average number of coding digits per message is minimized.
Abstract: An optimum method of coding an ensemble of messages consisting of a finite number of members is developed. A minimum-redundancy code is one constructed in such a way that the average number of coding digits per message is minimized.

5,221 citations

Journal ArticleDOI
John Makhoul1
01 Apr 1975
TL;DR: This paper gives an exposition of linear prediction in the analysis of discrete signals as a linear combination of its past values and present and past values of a hypothetical input to a system whose output is the given signal.
Abstract: This paper gives an exposition of linear prediction in the analysis of discrete signals The signal is modeled as a linear combination of its past values and present and past values of a hypothetical input to a system whose output is the given signal In the frequency domain, this is equivalent to modeling the signal spectrum by a pole-zero spectrum The major part of the paper is devoted to all-pole models The model parameters are obtained by a least squares analysis in the time domain Two methods result, depending on whether the signal is assumed to be stationary or nonstationary The same results are then derived in the frequency domain The resulting spectral matching formulation allows for the modeling of selected portions of a spectrum, for arbitrary spectral shaping in the frequency domain, and for the modeling of continuous as well as discrete spectra This also leads to a discussion of the advantages and disadvantages of the least squares error criterion A spectral interpretation is given to the normalized minimum prediction error Applications of the normalized error are given, including the determination of an "optimal" number of poles The use of linear prediction in data compression is reviewed For purposes of transmission, particular attention is given to the quantization and encoding of the reflection (or partial correlation) coefficients Finally, a brief introduction to pole-zero modeling is given

4,206 citations

Journal ArticleDOI
TL;DR: The state of the art in data compression is arithmetic coding, not the better-known Huffman method, which gives greater compression, is faster for adaptive models, and clearly separates the model from the channel encoding.
Abstract: The state of the art in data compression is arithmetic coding, not the better-known Huffman method. Arithmetic coding gives greater compression, is faster for adaptive models, and clearly separates the model from the channel encoding.

3,188 citations

Proceedings ArticleDOI
12 Apr 1976
TL;DR: The utility and effectiveness of these transforms are evaluated in terms of some standard performance criteria such as computational complexity, variance distribution, mean-square error, correlated rms error, rate distortion, data compression, classification error, and digital hardware realization.
Abstract: A tutorial-review paper on discrete orthogonal transforms and their applications in digital signal and image (both monochrome and color) processing is presented. Various transforms such as discrete Fourier, discrete cosine, Walsh-Hadamard, slant, Haar, discrete linear basis, Hadamard-Haar, rapid, lower triangular, generalized Haar, slant Haar and Karhunen-Loeve are defined and developed. Pertinent properties of these transforms such as power spectra, cyclic and dyadic convolution and correlation are outlined. Efficient algorithms for fast implementation of these transforms based on matrix partitioning or matrix factoring are presented. The application of these transforms in speech and image processing, spectral analysis, digital filtering (linear, nonlinear, optimal and suboptimal), nonlinear systems analysis, spectrography, digital holography, industrial testing, spectrometric imaging, feature selection, and patter recognition is presented. The utility and effectiveness of these transforms are evaluated in terms of some standard performance criteria such as computational complexity, variance distribution, mean-square error, correlated rms error, rate distortion, data compression, classification error, and digital hardware realization.

928 citations