scispace - formally typeset
Search or ask a question
Journal ArticleDOI

ECG data compression techniques-a unified approach

TL;DR: The theoretical bases behind the direct ECG data compression schemes are presented and classified into three categories: tolerance-comparison compression, DPCM, and entropy coding methods and a framework for evaluation and comparison of ECG compression schemes is presented.
Abstract: Electrocardiogram (ECG) compression techniques are compared, and a unified view of these techniques is established. ECG data compression schemes are presented in two major groups: direct data compression and transformation methods. The direct data compression techniques are ECG differential pulse code modulation (DPCM) and entropy coding, AZTEC, Turning-point, CORTES, Fan and SAPA algorithms, peak-picking, and cycle-to-cycle compression methods. The transformation methods include Fourier, Walsh, and Karhunen-Loeve transforms. The theoretical bases behind the direct ECG data compression schemes are presented and classified into three categories: tolerance-comparison compression, DPCM, and entropy coding methods. A framework for evaluation and comparison of ECG compression schemes is presented. >
Citations
More filters
Journal ArticleDOI
TL;DR: In this review, the emerging role of the wavelet transform in the interrogation of the ECG is discussed in detail, where both the continuous and the discrete transform are considered in turn.
Abstract: The wavelet transform has emerged over recent years as a powerful time-frequency analysis and signal coding tool favoured for the interrogation of complex nonstationary signals. Its application to biosignal processing has been at the forefront of these developments where it has been found particularly useful in the study of these, often problematic, signals: none more so than the ECG. In this review, the emerging role of the wavelet transform in the interrogation of the ECG is discussed in detail, where both the continuous and the discrete transform are considered in turn.

794 citations


Cites methods from "ECG data compression techniques-a u..."

  • ...Transform methods, as their name implies, operate by first transforming the ECG signal into another domain including Fourier, Walsh, Kahunen Loeve, discrete cosine transforms and more recently the wavelet transform (Jalaleddine et al 1990)....

    [...]

Journal ArticleDOI
TL;DR: This paper quantifies the potential of the emerging compressed sensing (CS) signal acquisition/compression paradigm for low-complexity energy-efficient ECG compression on the state-of-the-art Shimmer WBSN mote and shows that CS represents a competitive alternative to state- of- the-art digital wavelet transform (DWT)-basedECG compression solutions in the context of WBSn-based ECG monitoring systems.
Abstract: Wireless body sensor networks (WBSN) hold the promise to be a key enabling information and communications technology for next-generation patient-centric telecardiology or mobile cardiology solutions. Through enabling continuous remote cardiac monitoring, they have the potential to achieve improved personalization and quality of care, increased ability of prevention and early diagnosis, and enhanced patient autonomy, mobility, and safety. However, state-of-the-art WBSN-enabled ECG monitors still fall short of the required functionality, miniaturization, and energy efficiency. Among others, energy efficiency can be improved through embedded ECG compression, in order to reduce airtime over energy-hungry wireless links. In this paper, we quantify the potential of the emerging compressed sensing (CS) signal acquisition/compression paradigm for low-complexity energy-efficient ECG compression on the state-of-the-art Shimmer WBSN mote. Interestingly, our results show that CS represents a competitive alternative to state-of-the-art digital wavelet transform (DWT)-based ECG compression solutions in the context of WBSN-based ECG monitoring systems. More specifically, while expectedly exhibiting inferior compression performance than its DWT-based counterpart for a given reconstructed signal quality, its substantially lower complexity and CPU execution time enables it to ultimately outperform DWT-based ECG compression in terms of overall energy efficiency. CS-based ECG compression is accordingly shown to achieve a 37.1% extension in node lifetime relative to its DWT-based counterpart for “good” reconstruction quality.

680 citations

Journal ArticleDOI
TL;DR: This statement examines the relation of the resting ECG to its technology to establish standards that will improve the accuracy and usefulness of the ECG in practice and to recommend recommendations for ECG standards.

649 citations

Journal ArticleDOI
TL;DR: A wavelet electrocardiogram (ECG) data codec based on the set partitioning in hierarchical trees (SPIHT) compression algorithm is proposed and is significantly more efficient in compression and in computation than previously proposed ECG compression schemes.
Abstract: A wavelet electrocardiogram (ECG) data codec based on the set partitioning in hierarchical trees (SPIHT) compression algorithm is proposed in this paper. The SPIHT algorithm (A. Said and W.A. Pearlman, IEEE Trans. Ccts. Syst. II, vol. 6, p. 243-50, 1996) has achieved notable success in still image coding. The authors modified the algorithm for the one-dimensional case and applied it to compression of ECG data. Experiments on selected records from the MIT-BIH arrhythmia database revealed that the proposed codec is significantly more efficient in compression and in computation than previously proposed ECG compression schemes. The coder also attains exact bit rate control and generates a bit stream progressive in quality or rate.

521 citations

References
More filters
Journal ArticleDOI
20 Oct 1961-Science
TL;DR: Electrocardiography is proposed to be implemented by the use of long-period, continuous recording of heart potentials with a portable, self-contained instrument together with semiautomatic methods for the rapid analysis of the resulting voluminous data.
Abstract: I have proposed that orthodox electrocardiography be implemented, both for research and medical purposes, by the use of long-period, continuous recording of heart potentials with a portable, self-contained instrument-the electrocardiocorder together with semiautomatic methods for the rapid analysis of the resulting voluminous data. An electronic system to make this concept practical has been developed in our laboratory and typical results are described in this article.

464 citations

Journal ArticleDOI
TL;DR: A preprocessing program developed for real-time monitoring of the electrocardiogram by digital computer has proved useful for rhythm analysis.
Abstract: A preprocessing program developed for real-time monitoring of the electrocardiogram by digital computer has proved useful for rhythm analysis. The program suppresses low amplitude signals, reduces the data rate by a factor of about 10, and codes the result in a form convenient for analysis.

374 citations

Journal ArticleDOI
TL;DR: A new technique for fast “scan-along” computation of piecewise linear approximations of digital curves in 2-space is described and the application to the boundaries of the images of a lung and a rib in chest radiographs is illustrated.

359 citations

Journal ArticleDOI
TL;DR: By COMMITTEE MEMBERS: CHARLES E. KOSSMANN, M.D., CHAIRMAN, DANIEL A. BRODY, MD., GEORGE E. BURCH,M.D, and HUBERT V. PIPBERGER, M,D, of the SUBCOMMITTEE on Instrumentation.
Abstract: By COMMITTEE MEMBERS: CHARLES E. KOSSMANN, M.D., CHAIRMAN, DANIEL A. BRODY, M.D., GEORGE E. BURCH, M.D., HANs H. HECHT, M.D., FRANKLIN D. JOHNSTON, M.D., CALVIN KAY, M.D., EUGENE LEPESCHKIN, M.D., HUBERT V. PIPBERGER, M.D., AND by MEMBERS OF THE SUBCOMMITTEE ON INSTRUMENTATION: * HUBERT V. PIPBERGER, M.D., CHAIRMAN, GERHARD BAULE, PH.D., ALAN S. BERSON, M.S., STANLEY A. BRILLER, M.D., DAVID B. GESELOWITZ, Ph.D., LEO G. HORAN, M.D., AND OTTO H. SCHMITT, Ph.D.

295 citations

Journal ArticleDOI
TL;DR: A new algorithm called CORTES is described here that is suited for real-time applications of ECG analysis and combines the best features of two other techniques called TP and AZTEC.
Abstract: Typically the ECG is sampled at a rate of 200 samples/s or more, producing a large amount of data that are difficult to store, analyze, and transmit. Data-reduction algorithms that operate in real time reduce he amount of data without losing the clinical information content. They must also leave sufficient computation time available for ECG analysis. We describe here a new algorithm called CORTES that is suited for such real-time applications. This algorithm combines the best features of two other techniques called TP and AZTEC. We present the results of a study to find optimal experimental values for the controlling variables in CORTES. We compare the computations of root-mean-square reconstruction errors for a diversity of encoded ECG signals.

277 citations