scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows

01 Jan 2010-Freshwater Biology (Wiley/Blackwell (10.1111))-Vol. 55, Iss: 1, pp 194-205
TL;DR: In an effort to develop quantitative relationships between various kinds of flow alteration and ecological responses, this paper reviewed 165 papers published over the last four decades, with a focus on more recent papers.
Abstract: Summary 1. In an effort to develop quantitative relationships between various kinds of flow alteration and ecological responses, we reviewed 165 papers published over the last four decades, with a focus on more recent papers. Our aim was to determine if general relationships could be drawn from disparate case studies in the literature that might inform environmental flows science and management. 2. For all 165 papers we characterised flow alteration in terms of magnitude, frequency, duration, timing and rate of change as reported by the individual studies. Ecological responses were characterised according to taxonomic identity (macroinvertebrates, fish, riparian vegetation) and type of response (abundance, diversity, demographic parameters). A ‘qualitative’ or narrative summary of the reported results strongly corroborated previous, less comprehensive, reviews by documenting strong and variable ecological responses to all types of flow alteration. Of the 165 papers, 152 (92%) reported decreased values for recorded ecological metrics in response to a variety of types of flow alteration, whereas 21 papers (13%) reported increased values. 3. Fifty-five papers had information suitable for quantitative analysis of ecological response to flow alteration. Seventy per cent of these papers reported on alteration in flow magnitude, yielding a total of 65 data points suitable for analysis. The quantitative analysis provided some insight into the relative sensitivities of different ecological groups to alteration in flow magnitudes, but robust statistical relationships were not supported. Macroinvertebrates showed mixed responses to changes in flow magnitude, with abundance and diversity both increasing and decreasing in response to elevated flows and to reduced flows. Fish abundance, diversity and demographic rates consistently declined in response to both elevated and reduced flow magnitude. Riparian vegetation metrics both increased and decreased in response to reduced peak flows, with increases reflecting mostly enhanced non-woody vegetative cover or encroachment into the stream channel. 4. Our analyses do not support the use of the existing global literature to develop general, transferable quantitative relationships between flow alteration and ecological response; however, they do support the inference that flow alteration is associated with ecological change and that the risk of ecological change increases with increasing magnitude of flow alteration. 5. New sampling programs and analyses that target sites across well-defined gradients of flow alteration are needed to quantify ecological response and develop robust and general flow alteration–ecological response relationships. Similarly, the collection of pre- and post-alteration data for new water development programs would significantly add to our basic understanding of ecological responses to flow alteration.
Citations
More filters
Journal ArticleDOI
13 Feb 2015-Science
TL;DR: An updated and extended analysis of the planetary boundary (PB) framework and identifies levels of anthropogenic perturbations below which the risk of destabilization of the Earth system (ES) is likely to remain low—a “safe operating space” for global societal development.
Abstract: The planetary boundaries framework defines a safe operating space for humanity based on the intrinsic biophysical processes that regulate the stability of the Earth system. Here, we revise and update the planetary boundary framework, with a focus on the underpinning biophysical science, based on targeted input from expert research communities and on more general scientific advances over the past 5 years. Several of the boundaries now have a two-tier approach, reflecting the importance of cross-scale interactions and the regional-level heterogeneity of the processes that underpin the boundaries. Two core boundaries—climate change and biosphere integrity—have been identified, each of which has the potential on its own to drive the Earth system into a new state should they be substantially and persistently transgressed.

7,169 citations

Journal ArticleDOI
TL;DR: The ecological limits of hydrologic alteration (ELOHA) as mentioned in this paper is a framework for assessing environmental flow needs for many streams and rivers simultaneously to foster development and implementation of environmental flow standards at the regional scale.
Abstract: SUMMARY 1. The flow regime is a primary determinant of the structure and function of aquatic and riparian ecosystems for streams and rivers. Hydrologic alteration has impaired riverine ecosystems on a global scale, and the pace and intensity of human development greatly exceeds the ability of scientists to assess the effects on a river-by-river basis. Current scientific understanding of hydrologic controls on riverine ecosystems and experience gained from individual river studies support development of environmental flow standards at the regional scale. 2. This paper presents a consensus view from a group of international scientists on a new framework for assessing environmental flow needs for many streams and rivers simultaneously to foster development and implementation of environmental flow standards at the regional scale. This framework, the ecological limits of hydrologic alteration (ELOHA), is a synthesis of a number of existing hydrologic techniques and environmental flow methods that are currently being used to various degrees and that can support comprehensive regional flow management. The flexible approach allows

1,408 citations

Journal ArticleDOI
TL;DR: Efforts to reverse global trends in freshwater degradation now depend on bridging an immense gap between the aspirations of conservation biologists and the accelerating rate of species endangerment.
Abstract: In the 12 years since Dudgeon et al. (2006) reviewed major pressures on freshwater ecosystems, the biodiversity crisis in the world’s lakes, reservoirs, rivers, streams and wetlands has deepened. While lakes, reservoirs and rivers cover only 2.3% of the Earth’s surface, these ecosystems host at least 9.5% of the Earth’s described animal species. Furthermore, using the World Wide Fund for Nature’s Living Planet Index, freshwater population declines (83% between 1970 and 2014) continue to outpace contemporaneous declines in marine or terrestrial systems. The Anthropocene has brought multiple new and varied threats that disproportionately impact freshwater systems. We document 12 emerging threats to freshwater biodiversity that are either entirely new since 2006 or have since intensified: (i) changing climates; (ii) e-commerce and invasions; (iii) infectious diseases; (iv) harmful algal blooms; (v) expanding hydropower; (vi) emerging contaminants; (vii) engineered nanomaterials; (viii) microplastic pollution; (ix) light and noise; (x) freshwater salinisation; (xi) declining calcium; and (xii) cumulative stressors. Effects are evidenced for amphibians, fishes, invertebrates, microbes, plants, turtles and waterbirds, with potential for ecosystem-level changes through bottom-up and top-down processes. In our highly uncertain future, the net effects of these threats raise serious concerns for freshwater ecosystems. However, we also highlight opportunities for conservation gains as a result of novel management tools (e.g. environmental flows, environmental DNA) and specific conservation-oriented actions (e.g. dam removal, habitat protection policies,managed relocation of species) that have been met with varying levels of success.Moving forward, we advocate hybrid approaches that manage fresh waters as crucial ecosystems for human life support as well as essential hotspots of biodiversity and ecological function. Efforts to reverse global trends in freshwater degradation now depend on bridging an immense gap between the aspirations of conservation biologists and the accelerating rate of species endangerment.

1,230 citations


Cites background from "Ecological responses to altered flo..."

  • ...Instead, the success of river protection and restoration will depend upon accurately modelling relationships between hydrological patterns and ecological responses, followed by implementation of water allocations within a range set by the resilience of these ecosystems (Poff & Zimmerman, 2010)....

    [...]

Journal ArticleDOI
TL;DR: The authors identifies the issues facing water managers today and future research needed to better inform those who strive to create a more sustainable and desirable future, especially given a changing and uncertain future climate, and a rapidly growing population that is driving increased social and economic development, globalization, and urbanization.
Abstract: Water distinguishes our planet compared to all the others we know about. While the global supply of available freshwater is more than adequate to meet all current and foreseeable water demands, its spatial and temporal distributions are not. There are many regions where our freshwater resources are inadequate to meet domestic, economic development and environmental needs. In such regions, the lack of adequate clean water to meet human drinking water and sanitation needs is indeed a constraint on human health and productivity and hence on economic development as well as on the maintenance of a clean environment and healthy ecosystems. All of us involved in research must find ways to remove these constraints. We face multiple challenges in doing that, especially given a changing and uncertain future climate, and a rapidly growing population that is driving increased social and economic development, globalization, and urbanization. How best to meet these challenges requires research in all aspects of water management. Since 1965, the journal Water Resources Research has played an important role in reporting and disseminating current research related to managing the quantity and quality and cost of this resource. This paper identifies the issues facing water managers today and future research needed to better inform those who strive to create a more sustainable and desirable future.

582 citations

Journal ArticleDOI
TL;DR: An invigorated global research programme to construct and calibrate hydro-ecological models and environmental flow standards at multiple spatial scales – applicable to all rivers in any economic and societal setting is proposed.
Abstract: SUMMARY 1. Natural biogeochemical processes and diverse communities of aquatic biota regulate freshwater quantity and quality in ways that are not sufficiently acknowledged nor appreciated by the water resources management community. The establishment and enforcement of environmental flow requirements offer promising means to improve and care for these critical environmental services. This Special Issue provides new insights and novel techniques to determine, protect and restore ecologically and socially sustainable flow regimes, and thereby help achieve the water-related goals of the Millennium Ecosystem Assessment. 2. Whilst alteration of flow, sediment, organic matter and thermal regimes interact to reduce biological diversity and the ecological integrity of freshwater ecosystems – and thereby degrade the properties and ecological services most valued by humans – ‘environmental flows’ left in rivers, or restored to developed rivers, will sustain many ecological and societal values. The success of river protection and rehabilitation ⁄ restoration depends upon understanding and accurately modelling relationships between hydrological patterns, fluvial disturbance and ecological responses in rivers and floodplains. 3. This Special Issue presents new analytical and modelling approaches to support the development of hydro-ecological models and environmental flow standards at multiple spatial scales – applicable to all rivers in any economic and societal setting. Examples include the new framework Ecological Limits of Hydrologic Alteration (ELOHA) founded on hydrological classification and gradient analysis; ecological trait analysis; Bayesian hierarchical modelling; Bayesian Decision Networks; and Integrated Basin Flow Assessment (IBFA). 4. Advances in the allocation of flood flows along the River Murray in Australia, an Ecosystems Function Model (HEC-EFM) for the Bill Williams River restoration programme in Arizona (U.S.A), the European Water Framework Directive, and improved management of hydroelectric dams demonstrate the potential for significant ecological recovery following partial restoration of natural river flow regimes. 5. Based on contributions to this Special Issue, the action agenda of the 2007 Brisbane Declaration on environmental flows and the wider literature, we propose an invigorated global research programme to construct and calibrate hydro-ecological

543 citations


Cites background from "Ecological responses to altered flo..."

  • ...The strengths of the knowledge base are explored by Poff & Zimmerman (2010), who review 165 journal papers, with a focus on those recently published....

    [...]

  • ...Poff et al. (2010) suggest that investigative programmes are...

    [...]

References
More filters
Journal ArticleDOI
TL;DR: This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities and advocates continuing attempts to check species loss but urges adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods.
Abstract: Freshwater biodiversity is the over-riding conservation priority during the International Decade for Action - 'Water for Life' - 2005 to 2015. Fresh water makes up only 0.01% of the World's water and approximately 0.8% of the Earth's surface, yet this tiny fraction of global water supports at least 100000 species out of approximately 1.8 million - almost 6% of all described species. Inland waters and freshwater biodiversity constitute a valuable natural resource, in economic, cultural, aesthetic, scientific and educational terms. Their conservation and management are critical to the interests of all humans, nations and governments. Yet this precious heritage is in crisis. Fresh waters are experiencing declines in biodiversity far greater than those in the most affected terrestrial ecosystems, and if trends in human demands for water remain unaltered and species losses continue at current rates, the opportunity to conserve much of the remaining biodiversity in fresh water will vanish before the 'Water for Life' decade ends in 2015. Why is this so, and what is being done about it? This article explores the special features of freshwater habitats and the biodiversity they support that makes them especially vulnerable to human activities. We document threats to global freshwater biodiversity under five headings: overexploitation; water pollution; flow modification; destruction or degradation of habitat; and invasion by exotic species. Their combined and interacting influences have resulted in population declines and range reduction of freshwater biodiversity worldwide. Conservation of biodiversity is complicated by the landscape position of rivers and wetlands as 'receivers' of land-use effluents, and the problems posed by endemism and thus non-substitutability. In addition, in many parts of the world, fresh water is subject to severe competition among multiple human stakeholders. Protection of freshwater biodiversity is perhaps the ultimate conservation challenge because it is influenced by the upstream drainage network, the surrounding land, the riparian zone, and - in the case of migrating aquatic fauna - downstream reaches. Such prerequisites are hardly ever met. Immediate action is needed where opportunities exist to set aside intact lake and river ecosystems within large protected areas. For most of the global land surface, trade-offs between conservation of freshwater biodiversity and human use of ecosystem goods and services are necessary. We advocate continuing attempts to check species loss but, in many situations, urge adoption of a compromise position of management for biodiversity conservation, ecosystem functioning and resilience, and human livelihoods in order to provide a viable long-term basis for freshwater conservation. Recognition of this need will require adoption of a new paradigm for biodiversity protection and freshwater ecosystem management - one that has been appropriately termed 'reconciliation ecology'.

5,857 citations


"Ecological responses to altered flo..." refers background in this paper

  • ...Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows...

    [...]

  • ...…flow alteration threatens the biodiversity and ecosystem functions of rivers on a global scale (Postel & Richter, 2003; Nilsson et al., 2005; Dudgeon et al., 2006; Poff et al., 2007) has led to an accelerating interest in developing a general, quantitative understanding of aquatic ecosystem…...

    [...]

Journal ArticleDOI
TL;DR: In this article, Naiman et al. pointed out that harnessing of streams and rivers comes at great cost: Many rivers no longer support socially valued native species or sustain healthy ecosystems that provide important goods and services.
Abstract: H umans have long been fascinated by the dynamism of free-flowing waters. Yet we have expended great effort to tame rivers for transportation, water supply, flood control, agriculture, and power generation. It is now recognized that harnessing of streams and rivers comes at great cost: Many rivers no longer support socially valued native species or sustain healthy ecosystems that provide important goods and services (Naiman et al. 1995, NRC 1992).

5,799 citations

Journal ArticleDOI
TL;DR: This literature review has focused this literature review around four key principles to highlight the important mechanisms that link hydrology and aquatic biodiversity and to illustrate the consequent impacts of altered flow regimes.
Abstract: The flow regime is regarded by many aquatic ecologists to be the key driver of river and floodplain wet- land ecosystems. We have focused this literature review around four key principles to highlight the important mech- anisms that link hydrology and aquatic biodiversity and to illustrate the consequent impacts of altered flow regimes: Firstly, flow is a major determinant of physical habitat in streams, which in turn is a major determinant of biotic com- position; Secondly, aquatic species have evolved life history strategies primarily in direct response to the natural flow regimes; Thirdly, maintenance of natural patterns of longitu- dinal and lateral connectivity is essential to the viability of populations of many riverine species; Finally, the invasion and success of exotic and introduced species in rivers is facilitated by the alteration of flow regimes. The impacts of flow change are manifest across broad taxonomic groups including riverine plants, invertebrates, and fish. Despite growing recognition of these relationships, ecologists still struggle to predict and quantify biotic responses to altered flow regimes. One obvious difficulty is the ability to distin- guish the direct effects of modified flow regimes from im- pacts associated with land-use change that often accom- panies water resource development. Currently, evidence about how rivers function in relation to flow regime and the flows that aquatic organisms need exists largely as a series of untested hypotheses. To overcome these problems, aquatic science needs to move quickly into a manipulative or experimental phase, preferably with the aims of restora- tion and measuring ecosystem response.

3,018 citations

Journal ArticleDOI
15 Apr 2005-Science
TL;DR: A global overview of dam-based impacts on large river systems shows that over half (172 out of 292) are affected by dams, including the eight most biogeographically diverse catchments, which can be used to identify ecological risks associated with further impacts onLarge river systems.
Abstract: A global overview of dam-based impacts on large river systems shows that over half (172 out of 292) are affected by dams, including the eight most biogeographically diverse. Dam-impacted catchments experience higher irrigation pressure and about 25 times more economic activity per unit of water than do unaffected catchments. In view of projected changes in climate and water resource use, these findings can be used to identify ecological risks associated with further impacts on large river systems.

2,986 citations


"Ecological responses to altered flo..." refers background in this paper

  • ...…recognition that ubiquitous flow alteration threatens the biodiversity and ecosystem functions of rivers on a global scale (Postel & Richter, 2003; Nilsson et al., 2005; Dudgeon et al., 2006; Poff et al., 2007) has led to an accelerating interest in developing a general, quantitative…...

    [...]

  • ...Ecological responses to altered flow regimes: a literature review to inform the science and management of environmental flows...

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors proposed a method for assessing the degree of hydrologic alteration attributable to human influence within an ecosystem, referred to as the "Indicators of Hydrologic Alteration".
Abstract: Hydrologic regimes play a major role in determining the biotic composition, structure, and function of aquatic, wetland, and riparian ecosystems. But human land and water uses are substantially altering hydrologic regimes around the world. Improved quantitative evaluations of human-induced hydrologic changes are needed to advance research on the biotic implications of hydrologic alteration and to support ecosystem management and restoration plans. We propose a method for assessing the degree of hydrologic alteration attributable to human influence within an ecosystem. This method, referred to as the “Indicators of Hydrologic Alteration,” is based upon an analysis of hydrologic data available either from existing measurement points within an ecosystem (such as at stream gauges or wells) or model-generated data. We use 32 parameters, organized into five groups, to statistically characterize hydrologic variation within each year. These 32 parameters provide information on ecologically significant features of surface and ground water regimes influencing aquatic, wetland, and riparian ecosystems. We then assess the hydrologic perturbations associated with activities such as dam operations, flow diversion, groundwater pumping, or intensive land-use conversion by comparing measures of central tendency and dispersion for each parameter between user-defined “pre-impact” and “post-impact” time frames, generating 64 Indicators of Hydrologic Alteration. This method is intended for use with other ecosystem metrics in inventories of ecosystem integrity, in planning ecosystem management activities, and in setting and measuring progress toward conservation or restoration goals.

2,204 citations