scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Economics of additive manufacturing for end-usable metal parts

08 Feb 2012-The International Journal of Advanced Manufacturing Technology (Springer-Verlag)-Vol. 62, Iss: 9, pp 1147-1155
TL;DR: In this paper, a comparison between two different technologies for metal part fabrication, the traditional high-pressure die-casting and the direct metal laser sintering additive technique, is done with consideration of both the geometric possibilities of AM and the economic point of view.
Abstract: Additive manufacturing (AM) of metal parts combined with part redesign has a positive repercussion on cost saving. In fact, a remarkable cost reduction can be obtained if the component shape is modified to exploit AM potentialities. This paper deals with the evaluation of the production volume for which AM techniques result competitive with respect to conventional processes for the production of end-usable metal parts. For this purpose, a comparison between two different technologies for metal part fabrication, the traditional high-pressure die-casting and the direct metal laser sintering additive technique, is done with consideration of both the geometric possibilities of AM and the economic point of view. A design for additive manufacturing approach is adopted. Costs models of both processes are identified and then applied to an aeronautical component selected as case study. This research evidences that currently additive techniques can be economically convenient and competitive to traditional processes for small to medium batch production of metal parts.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a review of additive manufacturing (AM) techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid-state precipitation, mechanical properties and post-processing metallurgy.
Abstract: Additive manufacturing (AM), widely known as 3D printing, is a method of manufacturing that forms parts from powder, wire or sheets in a process that proceeds layer by layer. Many techniques (using many different names) have been developed to accomplish this via melting or solid-state joining. In this review, these techniques for producing metal parts are explored, with a focus on the science of metal AM: processing defects, heat transfer, solidification, solid-state precipitation, mechanical properties and post-processing metallurgy. The various metal AM techniques are compared, with analysis of the strengths and limitations of each. Only a few alloys have been developed for commercial production, but recent efforts are presented as a path for the ongoing development of new materials for AM processes.

1,713 citations


Cites background from "Economics of additive manufacturing..."

  • ...Case studies for aerospace parts have demonstrated AM brackets(152) and landing gears.(227) The development of Inconel 718 and other superalloys has been sponsored for use in aerospace components, but could be used in any industry that has the need for high temperatures or superalloy components....

    [...]

Journal ArticleDOI
TL;DR: In the case of aircraft components, AM technology enables low-volume manufacturing, easy integration of design changes and, at least as importantly, piece part reductions to greatly simplify product assembly.
Abstract: The past few decades have seen substantial growth in Additive Manufacturing (AM) technologies. However, this growth has mainly been process-driven. The evolution of engineering design to take advantage of the possibilities afforded by AM and to manage the constraints associated with the technology has lagged behind. This paper presents the major opportunities, constraints, and economic considerations for Design for Additive Manufacturing. It explores issues related to design and redesign for direct and indirect AM production. It also highlights key industrial applications, outlines future challenges, and identifies promising directions for research and the exploitation of AM's full potential in industry.

1,132 citations

Journal ArticleDOI
TL;DR: In this paper, the role of additive manufacturing process technology on industrial sustainability is investigated and the consequences of adopting this novel production technology are not well understood and an exploratory study draws on publically available data to provide insights into the impacts of additive additive manufacturing on sustainability.

1,061 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented a comprehensive assessment of 3D printing from a global sustainability perspective and quantified changes in life cycle costs, energy and CO 2 emissions globally by 2025.

647 citations

Journal ArticleDOI
TL;DR: In this paper, a reference system is presented to describe the key attributes of a product from a manufacturability stand-point: complexity, customization, and production volume, and a discrete set of customization levels are also introduced.
Abstract: Given the attention around additive manufacturing (AM), organizations want to know if their products should be fabricated using AM. To facilitate product development decisions, a reference system is shown describing the key attributes of a product from a manufacturability stand-point: complexity, customization, and production volume. Complexity and customization scales enable the grouping of products into regions of the map with common levels of the three attributes. A geometric complexity factor developed for cast parts is modified for a more general application. Parts with varying geometric complexity are then analyzed and mapped into regions of the complexity, customization, and production volume model. A discrete set of customization levels are also introduced. Implications for product development and manufacturing business approaches are discussed.

637 citations

References
More filters
Book
01 Jan 2009
TL;DR: Gibson et al. as discussed by the authors presented a comprehensive overview of additive manufacturing technologies plus descriptions of support technologies like software systems and post-processing approaches, and provided systematic solutions for process selection and design for AM Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing.
Abstract: Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing deals with various aspects of joining materials to form parts. Additive Manufacturing (AM) is an automated technique for direct conversion of 3D CAD data into physical objects using a variety of approaches. Manufacturers have been using these technologies in order to reduce development cycle times and get their products to the market quicker, more cost effectively, and with added value due to the incorporation of customizable features. Realizing the potential of AM applications, a large number of processes have been developed allowing the use of various materials ranging from plastics to metals for product development. Authors Ian Gibson, David W. Rosen and Brent Stucker explain these issues, as well as: Providing a comprehensive overview of AM technologies plus descriptions of support technologies like software systems and post-processing approaches Discussing the wide variety of new and emerging applications like micro-scale AM, medical applications, direct write electronics and Direct Digital Manufacturing of end-use components Introducing systematic solutions for process selection and design for AM Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing is the perfect book for researchers, students, practicing engineers, entrepreneurs, and manufacturing industry professionals interested in additive manufacturing.

3,087 citations

BookDOI
09 May 2006
TL;DR: In this paper, the authors present a discussion of the potential of rapid manufacturing in the automotive industry and present a case study of how to modify a garden fork handle in order to make it more efficient.
Abstract: List of Contributors. Editors. Foreword (Terry Wohlers). 1 Introduction to Rapid Manufacturing (Neil Hopkinson, Richard Hague and Phill Dickens). 1.1 Definition of Rapid Manufacturing. 1.2 Latitude of Applications. 1.3 Design Freedom. 1.4 Economic for Volumes down to One. 1.5 Overcoming the Legacy of Rapid Prototyping. 1.6 A Disruptive Technology. 1.7 A Breakdown of the Field of Rapid Manufacturing. 2 Unlocking the Design Potential of Rapid Manufacturing (Richard Hague). 2.1 Introduction. 2.2 Potential of Rapid Manufacturing on Design. 2.3 Geometrical Freedom. 2.4 Material Combinations. 2.5 Summary. 3 Customer Input and Customisation (R.I. Campbell). 3.1 Introduction. 3.2 Why Is Customer Input Needed? 3.3 What Input can the Customer Make? 3.4 How Can Customer Input Be Captured? 3.5 Using Customer Input within the Design Process. 3.6 What Is Customisation? 3.7 Determining Which Features to Customise. 3.8 Additional Customisation Issues. 3.9 Case Study - Customising Garden Fork Handles. 3.10 Conclusions. 4 CAD and Rapid Manufacturing (Rik Knoppers and Richard Hague). 4.1 Introduction. 4.2 CAD Background. 4.3 Relations between CAD and Rapid Manufacturing. 4.4 Future Developments Serving Rapid Manufacturing. 4.5 CAD for Functionally Graded Materials (FGMs). 4.6 Conclusion. 5 Emerging Rapid Manufacturing Processes (Neil Hopkinson and Phill Dickens). 5.1 Introduction. 5.2 Liquid-Based Processes. 5.3 Powder-Based Processes. 5.4 Solid-Based Processes. 6 Materials Issues in Rapid Manufacturing (David L. Bourell). 6.1 Role of Materials in Rapid Manufacturing. 6.2 Viscous Flow. 6.3 Photopolymerization. 6.4 Sintering. 6.5 Infiltration. 6.6 Mechanical Properties of RM Parts. 6.7 Materials for RM Processes. 6.8 The Future of Materials in Rapid Manufacturing. 7 Functionally Graded Materials (Poonjolai Erasenthiran and Valter Beal). 7.1 Introduction. 7.2 Processing Technologies. 7.3 Rapid Manufacturing of FGM Parts - Laser Fusion. 7.4 Modelling and Software Issues. 7.5 Characterisation of Properties. 7.6 Deposition Systems. 7.7 Applications. 8 Materials and Process Control for Rapid Manufacture (Tim Gornet). 8.1 Introduction. 8.2 Stereolithography. 8.3 Selective Laser Sintering. 8.4 Fused Deposition Modeling. 8.5 Metal-Based Processes. 9 Production Economics of Rapid Manufacture (Neil Hopkinson). 9.1 Introduction. 9.2 Machine Costs. 9.3 Material Costs. 9.4 Labour Costs. 9.5 Comparing the Costs of Rapid Manufacture with Injection Moulding. 10 Management and Implementation of Rapid Manufacturing (Chris Tuck and Richard Hague). 10.1 Introduction. 10.2 Costs of Manufacture. 10.3 Overhead Allocation. 10.4 Business Costs. 10.5 Stock and Work in Progress. 10.6 Location and Distribution. 10.7 Supply Chain Management. 10.8 Change. 10.9 Conclusions. 11 Medical Applications (Russ Harris and Monica Savalani). 11.1 Introduction. 11.2 Pre-Surgery RM. 11.3 Orthodontics. 11.4 Drug Delivery Devices. 11.5 Limb Prosthesis. 11.6 Specific Advances in Computer Aided Design (CAD). 11.7 In Vivo Devices. 12 Rapid Manufacturing in the Hearing Industry (Martin Masters, Therese Velde and Fred McBagonluri). 12.1 The Hearing Industry. 12.2 Manual Manufacturing. 12.3 Digital Manufacturing. 12.4 Scanning. 12.5 Electronic Detailing. 12.6 Electronic Modeling. 12.7 Fabrication. 12.8 Equipment. 12.9 Selective Laser Sintering (SLS). 12.10 Stereolithography Apparatus (SLA). 12.11 Raster-Based Manufacturing. 12.12 Materials. 12.13 Conclusion. 13 Automotive Applications (Graham Tromans). 13.1 Introduction. 13.2 Formula 1. 13.3 Cooling Duct. 13.4 The 'Flickscab'. 13.5 NASCAR. 13.6 Formula Student. 14 Rapid Manufacture in the Aeronautical Industry (Brad Fox). 14.1 Opportunity. 14.2 Overview. 14.3 Historical Perspective. 14.4 Aeronautical Requirements for RM. 14.5 Why RM Is Uniquely Suited to the Aeronautical Field. 14.6 Acceptable Technologies. 14.7 Qualifying RM Systems. 14.7.1 Qualifying SLS at British Aerospace (BAe). 14.7.2 Qualifying SLS at Northrop Grumman. 14.8 Summary. 14.9 Case Studies. 15 Aeronautical Case Studies using Rapid Manufacture (John Wooten). 15.1 Introduction. 15.2 Problem and Proposed Solution. 15.3 Benefits of a Rapid Manufacture Solution. 15.4 Pre-Production Program. 15.5 Production. 15.6 Summary. 16 Space Applications (Roger Spielman). 16.1 Introduction. 16.2 Building the Team. 16.3 Quality Assurance. 16.4 How to 'Qualify' a Part Created Using This Process. 16.5 Producing Hardware. 17 Additive Manufacturing Technologies for the Construction Industry (Rupert Soar). 17.1 Introduction. 17.2 The Emergence of Freeform Construction. 17.3 Freeform Construction Processes: A Matter of Scale. 17.4 Conclusions. 18 Rapid Manufacture for the Retail Industry (Janne Kyttanen). 18.1 Introduction. 18.2 Fascinating Technology with Little Consumer Knowledge. 18.3 The Need for Rapid Prototyping to Change to Rapid Manufacturing. 18.4 Rapid Manufacturing Retail Applications. 18.4.1 Lighting. 18.4.2 Three-Dimensional Textiles. 18.5 Mass Customisation. 18.5.1 Mass Customised Retail Products. 18.5.2 Future Posibilities of Mass Customised RM Products. 18.5.3 Limitations and Possibilities. 18.6 Experimentation and Future Applications. Index.

807 citations

Journal ArticleDOI
TL;DR: In this article, the main driving force of rapid prototyping or layer manufacturing techniques changed from fabrication of prototypes to rapid tooling (RT) and rapid manufacturing (RM), and nowadays, the direct fabrication of functional or structural end-use products made by layer manufacturing methods, i.e. RM, is the main trend.
Abstract: This overview will focus on the direct fabrication of metal components by using laser-forming techniques in a layer-by-layer fashion. The main driving force of rapid prototyping (RP) or layer manufacturing techniques changed from fabrication of prototypes to rapid tooling (RT) and rapid manufacturing (RM). Nowadays, the direct fabrication of functional or structural end-use products made by layer manufacturing methods, i.e. RM, is the main trend. The present paper reports on the various research efforts deployed in the past decade or so towards the manufacture of metal components by different laser processing methods (e.g. selective laser sintering, selective laser melting and 3-D laser cladding) and different commercial machines (e.g. Sinterstation, EOSINT, TrumaForm, MCP, LUMEX 25, Lasform). The materials and applications suitable to RM of metal parts by these techniques are also discussed.

703 citations

Book ChapterDOI
01 Nov 2015
TL;DR: In this article, the capabilities of additive manufacturing technologies provide an opportunity to rethink DFM to take advantage of the unique capabilities of these technologies, and several companies are now using AM technologies for production manufacturing.
Abstract: Design for manufacture and assembly (DFM) has typically meant that designers should tailor their designs to eliminate manufacturing difficulties and minimize manufacturing, assembly, and logistics costs. However, the capabilities of additive manufacturing technologies provide an opportunity to rethink DFM to take advantage of the unique capabilities of these technologies. As mentioned in Chap. 16, several companies are now using AM technologies for production manufacturing. For example, Siemens, Phonak, Widex, and the other hearing aid manufacturers use selective laser sintering and stereolithography machines to produce hearing aid shells; Align Technology uses stereolithography to fabricate molds for producing clear dental braces (“aligners”); and Boeing and its suppliers use polymer powder bed fusion (PBF) to produce ducts and similar parts for F-17 fighter jets. For hearing aids and dental aligners, AM machines enable manufacturing of tens to hundreds of thousands of parts, where each part is uniquely customized based upon person-specific geometric data. In the case of aircraft components, AM technology enables low-volume manufacturing, easy integration of design changes and, at least as importantly, piece part reductions to greatly simplify product assembly.

631 citations

Journal ArticleDOI
01 Sep 2006
TL;DR: In this article, a cost model for laser sintering is proposed, which leads to graph profiles that are typical for layer-by-layer manufacturing processes, and the evolution of cost models and the indirect cost significance in modern costing representation is shown.
Abstract: Rapid manufacturing (RM) is a modern production method based on layer by layer manufacturing directly from a three-dimensional computer-aided design model. The lack of tooling makes RM economically suitable for low and medium production volumes. A comparison with traditional manufacturing processes is important; in particular, cost comparison. Cost is usually the key point for decision making, with break-even points for different manufacturing technologies being the dominant information for decision makers. Cost models used for traditional production methodologies focus on material and labour costs, while modern automated manufacturing processes need cost models that are able to consider the high impact of investments and overheads. Previous work on laser sintering costing was developed in 2003. This current work presents advances and discussions on the limits of the previous work through direct comparison. A new cost model for laser sintering is then proposed. The model leads to graph profiles that are typical for layer-manufacturing processes. The evolution of cost models and the indirect cost significance in modern costing representation is shown finally.

331 citations