scispace - formally typeset
Open Access

Eddies, streams, and convergence zones in turbulent flows

Reads0
Chats0
TLDR
In this article, a set of objective criteria were found which describe regions in which the streamlines circulate, converge, or diverge, and form high streams of high velocity flow.
Abstract
Recent studies of turbulent shear flows have shown that many of their important kinematical and dynamical properties can be more clearly understood by describing the flows in terms of individual events or streamline patterns These events or flow regions are studied because they are associated with relatively large contributions to certain average properties of the flow, for example kinetic energy, Reynolds stress, or to particular processes in the flow, such as mixing and chemical reactions, which may be concentrated at locations where streamlines converge for fast chemical reactions (referred to as convergence or C regions), or in recirculating eddying regions for slow chemical reactions The aim of this project was to use the numerical simulations to develop suitable criteria for defining these eddying or vortical zones The C and streaming (S) zones were defined in order to define the whole flow field It is concluded that homogeneous and sheared turbulent flow fields are made up of characteristic flow zones: eddy, C, and S zones A set of objective criteria were found which describe regions in which the streamlines circulate, converge or diverge, and form high streams of high velocity flow

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

On the identification of a vortex

TL;DR: In this article, the authors propose a definition of vortex in an incompressible flow in terms of the eigenvalues of the symmetric tensor, which captures the pressure minimum in a plane perpendicular to the vortex axis at high Reynolds numbers, and also accurately defines vortex cores at low Reynolds numbers.
Journal ArticleDOI

Coherent Motions in the Turbulent Boundary Layer

TL;DR: In this paper, the role of coherent structures in the production and dissipation of turbulence in a boundary layer is characterized, summarizing the results of recent investigations, and diagrams and graphs are provided.
Journal ArticleDOI

Wall-layer models for large-eddy simulations

TL;DR: In this article, the authors present three broad classes of approaches: bypassing this region altogether using wall functions, solving a separate set of equations in the nearwall region, weakly coupled to the outer flow, or simulating the near-wall region in a global, Reynolds-averaged, sense.
Journal ArticleDOI

Preferential concentration of particles by turbulence

TL;DR: Preferential concentration describes the accumulation of dense particles within specific regions of the instantaneous turbulence field as mentioned in this paper, which occurs in dilute particle-laden flows with particle time constants of the same order as an appropriately chosen turbulence time scale.
Journal ArticleDOI

An objective definition of a vortex

TL;DR: In this article, the authors define a vortex as a set of fluid trajectories along which the strain acceleration tensor is indefinite over directions of zero strain, and they show using examples how this vortex criterion outperforms earlier frame-dependent criteria.