scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Effect of a Protective-Ventilation Strategy on Mortality in the Acute Respiratory Distress Syndrome

TL;DR: As compared with conventional ventilation, the protective strategy was associated with improved survival at 28 days, a higher rate of weaning from mechanical ventilation, and a lower rate of barotrauma in patients with the acute respiratory distress syndrome.
Abstract: Background In patients with the acute respiratory distress syndrome, massive alveolar collapse and cyclic lung reopening and overdistention during mechanical ventilation may perpetuate alveolar injury. We determined whether a ventilatory strategy designed to minimize such lung injuries could reduce not only pulmonary complications but also mortality at 28 days in patients with the acute respiratory distress syndrome. Methods We randomly assigned 53 patients with early acute respiratory distress syndrome (including 28 described previously), all of whom were receiving identical hemodynamic and general support, to conventional or protective mechanical ventilation. Conventional ventilation was based on the strategy of maintaining the lowest positive end-expiratory pressure (PEEP) for acceptable oxygenation, with a tidal volume of 12 ml per kilogram of body weight and normal arterial carbon dioxide levels (35 to 38 mm Hg). Protective ventilation involved end-expiratory pressures above the lower inflection poin...
Citations
More filters
Journal ArticleDOI
TL;DR: In patients with acute lung injury and the acute respiratory distress syndrome, mechanical ventilation with a lower tidal volume than is traditionally used results in decreased mortality and increases the number of days without ventilator use.
Abstract: Background Traditional approaches to mechanical ventilation use tidal volumes of 10 to 15 ml per kilogram of body weight and may cause stretch-induced lung injury in patients with acute lung injury and the acute respiratory distress syndrome. We therefore conducted a trial to determine whether ventilation with lower tidal volumes would improve the clinical outcomes in these patients. Methods Patients with acute lung injury and the acute respiratory distress syndrome were enrolled in a multicenter, randomized trial. The trial compared traditional ventilation treatment, which involved an initial tidal volume of 12 ml per kilogram of predicted body weight and an airway pressure measured after a 0.5-second pause at the end of inspiration (plateau pressure) of 50 cm of water or less, with ventilation with a lower tidal volume, which involved an initial tidal volume of 6 ml per kilogram of predicted body weight and a plateau pressure of 30 cm of water or less. The primary outcomes were death before a patient was discharged home and was breathing without assistance and the number of days without ventilator use from day 1 to day 28. Results The trial was stopped after the enrollment of 861 patients because mortality was lower in the group treated with lower tidal volumes than in the group treated with traditional tidal volumes (31.0 percent vs. 39.8 percent, P=0.007), and the number of days without ventilator use during the first 28 days after randomization was greater in this group (mean [+/-SD], 12+/-11 vs. 10+/-11; P=0.007). The mean tidal volumes on days 1 to 3 were 6.2+/-0.8 and 11.8+/-0.8 ml per kilogram of predicted body weight (P Conclusions In patients with acute lung injury and the acute respiratory distress syndrome, mechanical ventilation with a lower tidal volume than is traditionally used results in decreased mortality and increases the number of days without ventilator use.

11,028 citations

Journal ArticleDOI
TL;DR: An update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008 is provided.
Abstract: Objective:To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008.Design:A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at ke

9,137 citations

Journal ArticleDOI
TL;DR: A consensus committee of 68 international experts representing 30 international organizations was convened in 2008 to provide an update to the "Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock".
Abstract: To provide an update to the “Surviving Sepsis Campaign Guidelines for Management of Severe Sepsis and Septic Shock,” last published in 2008. A consensus committee of 68 international experts representing 30 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict of interest policy was developed at the onset of the process and enforced throughout. The entire guidelines process was conducted independent of any industry funding. A stand-alone meeting was held for all subgroup heads, co- and vice-chairs, and selected individuals. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The authors were advised to follow the principles of the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to guide assessment of quality of evidence from high (A) to very low (D) and to determine the strength of recommendations as strong (1) or weak (2). The potential drawbacks of making strong recommendations in the presence of low-quality evidence were emphasized. Recommendations were classified into three groups: (1) those directly targeting severe sepsis; (2) those targeting general care of the critically ill patient and considered high priority in severe sepsis; and (3) pediatric considerations. Key recommendations and suggestions, listed by category, include: early quantitative resuscitation of the septic patient during the first 6 h after recognition (1C); blood cultures before antibiotic therapy (1C); imaging studies performed promptly to confirm a potential source of infection (UG); administration of broad-spectrum antimicrobials therapy within 1 h of the recognition of septic shock (1B) and severe sepsis without septic shock (1C) as the goal of therapy; reassessment of antimicrobial therapy daily for de-escalation, when appropriate (1B); infection source control with attention to the balance of risks and benefits of the chosen method within 12 h of diagnosis (1C); initial fluid resuscitation with crystalloid (1B) and consideration of the addition of albumin in patients who continue to require substantial amounts of crystalloid to maintain adequate mean arterial pressure (2C) and the avoidance of hetastarch formulations (1B); initial fluid challenge in patients with sepsis-induced tissue hypoperfusion and suspicion of hypovolemia to achieve a minimum of 30 mL/kg of crystalloids (more rapid administration and greater amounts of fluid may be needed in some patients (1C); fluid challenge technique continued as long as hemodynamic improvement is based on either dynamic or static variables (UG); norepinephrine as the first-choice vasopressor to maintain mean arterial pressure ≥65 mmHg (1B); epinephrine when an additional agent is needed to maintain adequate blood pressure (2B); vasopressin (0.03 U/min) can be added to norepinephrine to either raise mean arterial pressure to target or to decrease norepinephrine dose but should not be used as the initial vasopressor (UG); dopamine is not recommended except in highly selected circumstances (2C); dobutamine infusion administered or added to vasopressor in the presence of (a) myocardial dysfunction as suggested by elevated cardiac filling pressures and low cardiac output, or (b) ongoing signs of hypoperfusion despite achieving adequate intravascular volume and adequate mean arterial pressure (1C); avoiding use of intravenous hydrocortisone in adult septic shock patients if adequate fluid resuscitation and vasopressor therapy are able to restore hemodynamic stability (2C); hemoglobin target of 7–9 g/dL in the absence of tissue hypoperfusion, ischemic coronary artery disease, or acute hemorrhage (1B); low tidal volume (1A) and limitation of inspiratory plateau pressure (1B) for acute respiratory distress syndrome (ARDS); application of at least a minimal amount of positive end-expiratory pressure (PEEP) in ARDS (1B); higher rather than lower level of PEEP for patients with sepsis-induced moderate or severe ARDS (2C); recruitment maneuvers in sepsis patients with severe refractory hypoxemia due to ARDS (2C); prone positioning in sepsis-induced ARDS patients with a Pao 2/Fio 2 ratio of ≤100 mm Hg in facilities that have experience with such practices (2C); head-of-bed elevation in mechanically ventilated patients unless contraindicated (1B); a conservative fluid strategy for patients with established ARDS who do not have evidence of tissue hypoperfusion (1C); protocols for weaning and sedation (1A); minimizing use of either intermittent bolus sedation or continuous infusion sedation targeting specific titration endpoints (1B); avoidance of neuromuscular blockers if possible in the septic patient without ARDS (1C); a short course of neuromuscular blocker (no longer than 48 h) for patients with early ARDS and a Pao 2/Fi o 2 180 mg/dL, targeting an upper blood glucose ≤180 mg/dL (1A); equivalency of continuous veno-venous hemofiltration or intermittent hemodialysis (2B); prophylaxis for deep vein thrombosis (1B); use of stress ulcer prophylaxis to prevent upper gastrointestinal bleeding in patients with bleeding risk factors (1B); oral or enteral (if necessary) feedings, as tolerated, rather than either complete fasting or provision of only intravenous glucose within the first 48 h after a diagnosis of severe sepsis/septic shock (2C); and addressing goals of care, including treatment plans and end-of-life planning (as appropriate) (1B), as early as feasible, but within 72 h of intensive care unit admission (2C). Recommendations specific to pediatric severe sepsis include: therapy with face mask oxygen, high flow nasal cannula oxygen, or nasopharyngeal continuous PEEP in the presence of respiratory distress and hypoxemia (2C), use of physical examination therapeutic endpoints such as capillary refill (2C); for septic shock associated with hypovolemia, the use of crystalloids or albumin to deliver a bolus of 20 mL/kg of crystalloids (or albumin equivalent) over 5–10 min (2C); more common use of inotropes and vasodilators for low cardiac output septic shock associated with elevated systemic vascular resistance (2C); and use of hydrocortisone only in children with suspected or proven “absolute”’ adrenal insufficiency (2C). Strong agreement existed among a large cohort of international experts regarding many level 1 recommendations for the best care of patients with severe sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for this important group of critically ill patients.

6,283 citations

Journal ArticleDOI
TL;DR: Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for these critically ill patients with high mortality.
Abstract: To provide an update to “Surviving Sepsis Campaign Guidelines for Management of Sepsis and Septic Shock: 2012”. A consensus committee of 55 international experts representing 25 international organizations was convened. Nominal groups were assembled at key international meetings (for those committee members attending the conference). A formal conflict-of-interest (COI) policy was developed at the onset of the process and enforced throughout. A stand-alone meeting was held for all panel members in December 2015. Teleconferences and electronic-based discussion among subgroups and among the entire committee served as an integral part of the development. The panel consisted of five sections: hemodynamics, infection, adjunctive therapies, metabolic, and ventilation. Population, intervention, comparison, and outcomes (PICO) questions were reviewed and updated as needed, and evidence profiles were generated. Each subgroup generated a list of questions, searched for best available evidence, and then followed the principles of the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) system to assess the quality of evidence from high to very low, and to formulate recommendations as strong or weak, or best practice statement when applicable. The Surviving Sepsis Guideline panel provided 93 statements on early management and resuscitation of patients with sepsis or septic shock. Overall, 32 were strong recommendations, 39 were weak recommendations, and 18 were best-practice statements. No recommendation was provided for four questions. Substantial agreement exists among a large cohort of international experts regarding many strong recommendations for the best care of patients with sepsis. Although a significant number of aspects of care have relatively weak support, evidence-based recommendations regarding the acute management of sepsis and septic shock are the foundation of improved outcomes for these critically ill patients with high mortality.

4,303 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an update to the original Surviving Sepsis Campaign clinical management guidelines for management of severe sepsis and septic shock, published in 2004.
Abstract: Objective To provide an update to the original Surviving Sepsis Campaign clinical management guidelines, “Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock,” published in 2004.

3,928 citations

References
More filters
Journal ArticleDOI
TL;DR: The form and validation results of APACHE II, a severity of disease classification system that uses a point score based upon initial values of 12 routine physiologic measurements, age, and previous health status, are presented.
Abstract: This paper presents the form and validation results of APACHE II, a severity of disease classification system. APACHE II uses a point score based upon initial values of 12 routine physiologic measurements, age, and previous health status to provide a general measure of severity of disease. An increasing score (range 0 to 71) was closely correlated with the subsequent risk of hospital death for 5815 intensive care admissions from 13 hospitals. This relationship was also found for many common diseases. When APACHE II scores are combined with an accurate description of disease, they can prognostically stratify acutely ill patients and assist investigators comparing the success of new or differing forms of therapy. This scoring index can be used to evaluate the use of hospital resources and compare the efficacy of intensive care in different hospitals or over time.

14,583 citations

Journal ArticleDOI
TL;DR: Efficient methods of analysis of randomized clinical trials in which the authors wish to compare the duration of survival among different groups of patients are described.
Abstract: Part I of this report appeared in the previous issue (Br. J. Cancer (1976) 34,585), and discussed the design of randomized clinical trials. Part II now describes efficient methods of analysis of randomized clinical trials in which we wish to compare the duration of survival (or the time until some other untoward event first occurs) among different groups of patients. It is intended to enable physicians without statistical training either to analyse such data themselves using life tables, the logrank test and retrospective stratification, or, when such analyses are presented, to appreciate them more critically, but the discussion may also be of interest to statisticians who have not yet specialized in clinical trial analyses.

8,334 citations

Journal ArticleDOI
TL;DR: An expanded definition of ARDS is proposed that takes into account new knowledge about adult respiratory distress syndrome and its clinical features, physiologic disturbances, prognosis, and pathologic findings.
Abstract: More than twenty years ago, Ashbaugh and coworkers, (1), in a now classic article, described. 12 patients whose striking but uniform clinical, physiologic, roentgenographic,and pathologic abnormalities distinguished them from among 272adult patients who had received respiratory support in the intensive care units of Colorado General Hospital and Denver General Hospital. The 12patients all had severedyspnea, tachypnea, cyanosis that was refractory to oxygen therapy, decreased respiratory system compliance, and diffuse alveolar infiltrations on their chest radiographs. Pathologic examination in seven patients who died revealed atelectasis, vascular congestion and hemorrhage, severe pulmonary edema and hyaline membranes. Shortly afterward, Petty and coworkers (2), called this constellation of findings the adult respiratory distress syndrome (ARDS). Since then, ARDS has been recognized as an entity throughout the world and has been the subject of numerous conferences, hundreds of articles, and several books. As a result of this activity, much descriptive information has been obtained about ARDS, and we have learned a lot about its clinical features, physiologic disturbances, prognosis, and pathologic findings. And yet formidable problems remain: there is disagreement about exactly what ARDS is and on what causes it; more importantly, available empiric treatment is inadequate, and mortality remains unacceptably high (600/0 or more) (3). This appears to be one of the few points of agreement among investigators, but even that statement is arguable (4). We believe that much of the controversy concerning ARDS is explained by the lack of a satisfactory definition of this elusivesyndrome. How can you collect, much less compare, epidemiologicdata and mortality figures when there is no uniformly accepted (and used) definition? How can you study basic pathophysiologic mechanisms, understand natural history, and above all, evaluate new therapeutic approaches in what appears now to be an amalgam of many different disorders? The purpose of this article, therefore, is to propose an expanded definition of ARDS that takes into account new knowledge about

2,372 citations

Journal ArticleDOI
TL;DR: This report is the first simple account yet published for non-statistical physicians of how to analyse efficiently data from clinical trials of survival duration, and it may be preferable to use these statistical methods to study time to local recurrence of tumour, or toStudy time to detectable metastatic spread, in addition to studying total survival.
Abstract: The Medical Research Council has for some years encouraged collaborative clinical trials in leukaemia and other cancers, reporting the results in the medical literature. One unreported result which deserves such publication is the development of the expertise to design and analyse such trials. This report was prepared by a group of British and American statisticians, but it is intended for people without any statistical expertise. Part I, which appears in this issue, discusses the design of such trials; Part II, which will appear separately in the January 1977 issue of the Journal, gives full instructions for the statistical analysis of such trials by means of life tables and the logrank test, including a worked example, and discusses the interpretation of trial results, including brief reports of 2 particular trials. Both parts of this report are relevant to all clinical trials which study time to death, and wound be equally relevant to clinical trials which study time to other particular classes of untoward event: first stroke, perhaps, or first relapse, metastasis, disease recurrence, thrombosis, transplant rejection, or death from a particular cause. Part I, in this issue, collects together ideas that have mostly already appeared in the medical literature, but Part II, next month, is the first simple account yet published for non-statistical physicians of how to analyse efficiently data from clinical trials of survival duration. Such trials include the majority of all clinical trials of cancer therapy; in cancer trials,however, it may be preferable to use these statistical methods to study time to local recurrence of tumour, or to study time to detectable metastatic spread, in addition to studying total survival. Solid tumours can be staged at diagnosis; if this, or any other available information in some other disease is an important determinant of outcome, it can be used to make the overall logrank test for the whole heterogeneous trial population more sensitive, and more intuitively satisfactory, for it will then only be necessary to compare like with like, and not, by chance, Stage I with Stage III.

2,047 citations

Journal ArticleDOI
TL;DR: The concept that mechanical ventilation can have a significant influence on the inflammatory/anti-inflammatory milieu of the lung, and thus play a role in initiating or propagating a local, and possibly systemic inflammatory response, is supported.
Abstract: We examined the effect of ventilation strategy on lung inflammatory mediators in the presence and absence of a preexisting inflammatory stimulus. 55 Sprague-Dawley rats were randomized to either intravenous saline or lipopolysaccharide (LPS). After 50 min of spontaneous respiration, the lungs were excised and randomized to 2 h of ventilation with one of four strategies: (a) control (C), tidal volume (Vt) = 7 cc/kg, positive end expiratory pressure (PEEP) = 3 cm H2O; (b) moderate volume, high PEEP (MVHP), Vt = 15 cc/kg; PEEP = 10 cm H2O; (c) moderate volume, zero PEEP (MVZP), Vt = 15 cc/kg, PEEP = 0; or (d) high volume, zero PEEP (HVZP), Vt = 40 cc/kg, PEEP = 0. Ventilation with zero PEEP (MVZP, HVZP) resulted in significant reductions in lung compliance. Lung lavage levels of TNFalpha, IL-1beta, IL-6, IL-10, MIP-2, and IFNgamma were measured by ELISA. Zero PEEP in combination with high volume ventilation (HVZP) had a synergistic effect on cytokine levels (e.g., 56-fold increase of TNFalpha versus controls). Identical end inspiratory lung distention with PEEP (MVHP) resulted in only a three-fold increase in TNFalpha, whereas MVZP produced a six-fold increase in lavage TNFalpha. Northern blot analysis revealed a similar pattern (C, MVHP < MVZP < HVZP) for induction of c-fos mRNA. These data support the concept that mechanical ventilation can have a significant influence on the inflammatory/anti-inflammatory milieu of the lung, and thus may play a role in initiating or propagating a local, and possibly systemic inflammatory response.

1,274 citations

Related Papers (5)