scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Effect of airborne contaminants on the wettability of supported graphene and graphite

01 Oct 2013-Nature Materials (Nature Research)-Vol. 12, Iss: 10, pp 925-931
TL;DR: It is demonstrated that airborne hydrocarbons adsorb on graphitic surfaces, and that a concurrent decrease in the water contact angle occurs when these contaminants are partially removed by both thermal annealing and controlled ultraviolet-O3 treatment.
Abstract: It is generally accepted that supported graphene is hydrophobic and that its water contact angle is similar to that of graphite Here, we show that the water contact angles of freshly prepared supported graphene and graphite surfaces increase when they are exposed to ambient air By using infrared spectroscopy and X-ray photoelectron spectroscopy we demonstrate that airborne hydrocarbons adsorb on graphitic surfaces, and that a concurrent decrease in the water contact angle occurs when these contaminants are partially removed by both thermal annealing and controlled ultraviolet-O3 treatment Our findings indicate that graphitic surfaces are more hydrophilic than previously believed, and suggest that previously reported data on the wettability of graphitic surfaces may have been affected by unintentional hydrocarbon contamination from ambient air
Citations
More filters
Journal ArticleDOI
TL;DR: It is shown that single-layer porous graphene can be used as a desalination membrane using an oxygen plasma etching process and exhibits a salt rejection rate of nearly 100% and rapid water transport.
Abstract: An oxygen plasma etching process can be used to create a nanoporous graphene layer that can efficiently desalinate water.

1,353 citations

Journal ArticleDOI
TL;DR: The presented method readily lends itself to fabrication of van der Waals heterostructures in both ambient and controlled atmospheres, while the ability to assemble pre-patterned layers paves the way for complex three-dimensional architectures.
Abstract: The assembly of individual two-dimensional materials into van der Waals heterostructures enables the construction of layered three-dimensional materials with desirable electronic and optical properties. A core problem in the fabrication of these structures is the formation of clean interfaces between the individual two-dimensional materials which would affect device performance. We present here a technique for the rapid batch fabrication of van der Waals heterostructures, demonstrated by the controlled production of 22 mono-, bi- and trilayer graphene stacks encapsulated in hexagonal boron nitride with close to 100% yield. For the monolayer devices, we found semiclassical mean-free paths up to 0.9 μm, with the narrowest samples showing clear indications of the transport being affected by boundary scattering. The presented method readily lends itself to fabrication of van der Waals heterostructures in both ambient and controlled atmospheres, while the ability to assemble pre-patterned layers paves the way for complex three-dimensional architectures.

490 citations

Journal ArticleDOI
TL;DR: It is shown that single graphene nanopores preferentially permit the passage of K+ cations over Cl− anions with selectivity ratios of over 100 and conduct monovalent cations up to 5 times more rapidly than divalent cations.
Abstract: As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed under an electric field via ion-selective pores. Here, we show that single graphene nanopores preferentially permit the passage of K(+) cations over Cl(-) anions with selectivity ratios of over 100 and conduct monovalent cations up to 5 times more rapidly than divalent cations. Surprisingly, the observed K(+)/Cl(-) selectivity persists in pores even as large as about 20 nm in diameter, suggesting that high throughput, highly selective graphene electrodialysis membranes can be fabricated without the need for subnanometer control over pore size.

362 citations

Journal ArticleDOI
11 Jul 2014-Langmuir
TL;DR: G/Cu exhibits the highest surface energy immediately after synthesis, and the surface energy decreases after airborne contamination occurs, suggesting the root cause of intrinsically mild polarity of G/Cu surface is discussed.
Abstract: Because of the atomic thinness of graphene, its integration into a device will always involve its interaction with at least one supporting substrate, making the surface energy of graphene critical to its real-life applications. In the current paper, the contact angle of graphene synthesized by chemical vapor deposition (CVD) was monitored temporally after synthesis using water, diiodomethane, ethylene glycol, and glycerol. The surface energy was then calculated based on the contact angle data by the Fowkes, Owens–Wendt (extended Fowkes), and Neumann models. The surface energy of fresh CVD graphene grown on a copper substrate (G/Cu) immediately after synthesis was determined to be 62.2 ± 3.1 mJ/m2 (Fowkes), 53.0 ± 4.3 mJ/m2 (Owens–Wendt) and 63.8 ± 2.0 mJ/m2 (Neumann), which decreased to 45.6 ± 3.9, 37.5 ± 2.3, and 57.4 ± 2.1 mJ/m2, respectively, after 24 h of air exposure. The ellipsometry characterization indicates that the surface energy of G/Cu is affected by airborne hydrocarbon contamination. G/Cu ex...

360 citations

Journal ArticleDOI
TL;DR: The major "graphene-on-surface" structures are described and the roles of their properties and related phenomena in governing the overall performance for specific applications including optoelectronics, surface catalysis, anti-friction and superlubricity, and coatings and composites are examined.
Abstract: Graphene has demonstrated great potential in next-generation electronics due to its unique two-dimensional structure and properties including a zero-gap band structure, high electron mobility, and high electrical and thermal conductivity. The integration of atom-thick graphene into a device always involves its interaction with a supporting substrate by van der Waals forces and other intermolecular forces or even covalent bonding, and this is critical to its real applications. Graphene films on different surfaces are expected to exhibit significant differences in their properties, which lead to changes in their morphology, electronic structure, surface chemistry/physics, and surface/interface states. Therefore, a thorough understanding of the surface/interface properties is of great importance. In this review, we describe the major “graphene-on-surface” structures and examine the roles of their properties and related phenomena in governing the overall performance for specific applications including optoelectronics, surface catalysis, anti-friction and superlubricity, and coatings and composites. Finally, perspectives on the opportunities and challenges of graphene-on-surface systems are discussed.

285 citations

References
More filters
Book
01 Jan 1960
TL;DR: In this paper, the authors discuss the nature and properties of liquid interfaces, including the formation of a new phase, nucleation and crystal growth, and the contact angle of surfaces of solids.
Abstract: Capillarity. The Nature and Thermodynamics of Liquid Interfaces. Surface Films on Liquid Substrates. Electrical Aspects of Surface Chemistry. Long--Range Forces. Surfaces of Solids. Surfaces of Solids: Microscopy and Spectroscopy. The Formation of a New Phase--Nucleation and Crystal Growth. The Solid--Liquid Interface--Contact Angle. The Solid--Liquid Interface--Adsorption from Solution. Frication, Lubrication, and Adhesion. Wetting, Flotation, and Detergency. Emulsions, Foams, and Aerosols. Macromolecular Surface Films, Charged Films, and Langmuir--Blodgett Layers. The Solid--Gas Interface--General Considerations. Adsorption of Gases and Vapors on Solids. Chemisorption and Catalysis. Index.

10,790 citations

Journal ArticleDOI
05 Jun 2009-Science
TL;DR: It is shown that graphene grows in a self-limiting way on copper films as large-area sheets (one square centimeter) from methane through a chemical vapor deposition process, and graphene film transfer processes to arbitrary substrates showed electron mobilities as high as 4050 square centimeters per volt per second at room temperature.
Abstract: Graphene has been attracting great interest because of its distinctive band structure and physical properties. Today, graphene is limited to small sizes because it is produced mostly by exfoliating graphite. We grew large-area graphene films of the order of centimeters on copper substrates by chemical vapor deposition using methane. The films are predominantly single-layer graphene, with a small percentage (less than 5%) of the area having few layers, and are continuous across copper surface steps and grain boundaries. The low solubility of carbon in copper appears to help make this growth process self-limiting. We also developed graphene film transfer processes to arbitrary substrates, and dual-gated field-effect transistors fabricated on silicon/silicon dioxide substrates showed electron mobilities as high as 4050 square centimeters per volt per second at room temperature.

10,663 citations

Journal ArticleDOI
TL;DR: Graphene dispersions with concentrations up to approximately 0.01 mg ml(-1), produced by dispersion and exfoliation of graphite in organic solvents such as N-methyl-pyrrolidone are demonstrated.
Abstract: Fully exploiting the properties of graphene will require a method for the mass production of this remarkable material. Two main routes are possible: large-scale growth or large-scale exfoliation. Here, we demonstrate graphene dispersions with concentrations up to approximately 0.01 mg ml(-1), produced by dispersion and exfoliation of graphite in organic solvents such as N-methyl-pyrrolidone. This is possible because the energy required to exfoliate graphene is balanced by the solvent-graphene interaction for solvents whose surface energies match that of graphene. We confirm the presence of individual graphene sheets by Raman spectroscopy, transmission electron microscopy and electron diffraction. Our method results in a monolayer yield of approximately 1 wt%, which could potentially be improved to 7-12 wt% with further processing. The absence of defects or oxides is confirmed by X-ray photoelectron, infrared and Raman spectroscopies. We are able to produce semi-transparent conducting films and conducting composites. Solution processing of graphene opens up a range of potential large-area applications, from device and sensor fabrication to liquid-phase chemistry.

5,600 citations

Journal ArticleDOI
24 Jun 2011-Science
TL;DR: This work synthesized a porous carbon with a Brunauer-Emmett-Teller surface area, a high electrical conductivity, and a low oxygen and hydrogen content that has high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes.
Abstract: Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp 2 -bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

5,486 citations


"Effect of airborne contaminants on ..." refers background or methods in this paper

  • ...Using this A value, we calculated the interaction potential per unit area between water and a suspendedN -layer graphene using equation (2)....

    [...]

  • ...(1) as-prepared; (2), (4) and (6): after exposure to 1-octadecene vapour for 30 min; (3) and (5) after 2 min of ultraviolet–O3 treatment....

    [...]

Journal ArticleDOI
TL;DR: This work demonstrates a top-gated graphene transistor that is able to reach doping levels of up to 5x1013 cm-2, which is much higher than those previously reported.
Abstract: The recent discovery of graphene has led to many advances in two-dimensional physics and devices. The graphene devices fabricated so far have relied on $SiO_2$ back gating. Electrochemical top gating is widely used for polymer transistors, and has also been successfully applied to carbon nanotubes. Here we demonstrate a top-gated graphene transistor that is able to reach doping levels of up to $5\times 10^{13} cm^{-2}$, which is much higher than those previously reported. Such high doping levels are possible because the nanometre-thick Debye layer in the solid polymer electrolyte gate provides a much higher gate capacitance than the commonly used $SiO_2$ back gate, which is usually about 300 nm thick. In situ Raman measurements monitor the doping. The G peak stiffens and sharpens for both electron and hole doping, but the 2D peak shows a different response to holes and electrons. The ratio of the intensities of the G and 2D peaks shows a strong dependence on doping, making it a sensitive parameter to monitor the doping.

3,254 citations