scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Effect of drilling mud bentonite contents on the fluid loss and filter cake formation on a field clay soil formation compared to the API fluid loss method and characterized using Vipulanandan models

TL;DR: In this paper, the Vipulanandan fluid loss model was compared to the API model and it predicted both short-term and long-term fluid losses very well based on the root mean square error (RMSE).
About: This article is published in Journal of Petroleum Science and Engineering.The article was published on 2020-06-01. It has received 42 citations till now. The article focuses on the topics: Filter cake & Drilling fluid.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the compressive strength of concrete mixtures with high volume fly ash (HVFA) has been evaluated and modeled for the LEED (Leadership for Energy and Environmental Design).
Abstract: Advances in technology and environmental issues allow the building industry to use ever more high-performance engineered materials. In this study, the hardness of concrete mixtures with high-volume fly ash (HVFA) has been evaluated and modeled for the LEED (Leadership for Energy and Environmental Design). High-performance building materials may have greater strength, ductility, external factor resistance, more environmentally sustainable construction, and lower cost than conventional building materials. To overcome the mentioned matter, this study aims to establish systematic multiscale models to predict the compressive strength of concrete mixes containing a high volume of fly ash (HVFA) and to be used by the construction industry with no theoretical restrictions. For that purpose, a wide experimental data (a total of 450 tested HVFA concrete mixes) from different academic research studies have been statically analyzed and modeled. For that purpose, Linear, Nonlinear Regressions, Multi-logistic Regression, M5P-tree, and Artificial Neural Network (ANN) technical approaches were used for the qualifications. In the modeling process, most relevant parameters affecting the strength of concrete, i.e. fly ash (class C and F) incorporation ratio (0–80% of cement's mass), water-to-binder ratio (0.27–0.58), and gravel, sand, cement contents and curing ages (3–365 days). According to the correlation coefficient (R) and the root mean square error, the compressive strength of HVFA concrete can be well predicted in terms of w/b, fly ash, cement, sand, and gravel densities, and curing time using various simulation techniques. Among the used approaches and based on the training data set, the model made based on the ANN, M5P-tree, and Non-linear regression models seem to be the most reliable models. The results of this study suggest that the M5Ptree-based model is performing better than other applied models using training and testing datasets. The maximum and minimum percentage of error between the actual test results and the outcome of the prediction using MLR, LR, M5P-tree, and ANN were 0.03–43%, 0.03–54%, 0.04–33%, and 0.03–41% respectively. Based on the outcomes from the models and statistical assessments such as coefficient of determination (R2), mean absolute error (MAE) and the root mean square error (RMSE), the models M5P-tree, ANN, and MLR respectively were predicted the compressive strength of the HVFA concrete very well with a high value of R2 and low values of MAE and RMSE based on the comparison with experimental data. The sensitivity investigation concludes that the curing time is the most dominating parameter for the prediction of the compressive strength of HVFA concrete with this data set.

69 citations

Journal ArticleDOI
TL;DR: In this paper, the compressive strength of concrete bricks with fly ash incorporation ratio (C and F) and water-to-binder ratio (0.235-1.2), and curing ages (1-365 days) is predicted using a multiscale model.
Abstract: This study aims to establish systematic multiscale models to predict the compressive strength of cement mortar containing a high volume of fly ash (FA) and to be used by the construction industry with no theoretical restrictions. For that purpose, a wide experimental data (a total of 450 tested cement mortar modified with FA) from different academic research studies have been statically analyzed and modeled. For that purpose, Linear and Nonlinear regression, M5P-tree, and Artificial Neural Network (ANN) technical approaches were used for the qualifications. In the modeling process, most relevant parameters affecting the strength of cement mortar, i.e. fly ash (class C and F) incorporation ratio (0−70% of cement's mass), water-to-binder ratio (0.235–1.2), and curing ages (1–365 days). According to the correlation coefficient (R), mean absolute error and the root mean a square error, the compressive strength of cement mortar can be well predicted in terms of w/b, fly ash, and curing time using various simulation techniques. The results of this study suggest that the Non-linear regression-based model (NLR) and ANN are performing better than other applied models using training and testing datasets. The sensitivity investigation concludes that the curing time is the most dominating parameter for the prediction of the compressive strength of cement mortar with this data set.

56 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of nano-silica (NS) as an additive to the Ordinary Portland Cement was evaluated and quantified using non-linear regression (NLR) based model.

46 citations

Journal ArticleDOI
TL;DR: In this article, the effect of nano-silica (NS) as an additive to Ordinary Portland Cement was evaluated and quantified using a non-linear regression (NLR) based model.
Abstract: In this study, the effect of nano-silica (NS) as an additive to Ordinary Portland Cement was evaluated and quantified. Scanning electron microscopy (SEM), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy analysis was used to identify the cement and NS contents. Experimental tests and modeling were conducted to quantify and predict the rheological properties of the cement in the liquid phase such as yield stress, maximum shear strength, plastic viscosity, and mechanical behavior such as compressive strength of cement after hardening. The cement modified with NS was tested at water-to-cement ratios (w/c) of 0.35 and 0.45 and temperatures ranging from 25 to 75 °C. X-ray diffraction (XRD) and TGA were used to analyze the cement, nano-silica, and cement modified with nano-silica. The behavior of cement paste in the liquid phase (slurry) and hardened phase modified with different percentages of nano-silica up to 1% (by dry weight of cement) was investigated. The compressive strength of cement paste modified with nano-silica was tested from a young age up to 28 days of curing. Non-linear regression (NLR) based model was used to assess the effect of nano-silica on the rheological properties and compressive strength of cement. Replacing the cement with nano-silica substantially reduced the volume of Ca(OH)2. TGA tests showed that the 1% nano-silica additive leads to low cement weight loss up to 800 °C due to the de-carbonation of CaCO3 in the hydrated compound and due to interacting the NS with the cement. The addition of NS increased the ultimate shear strength (τmax) and the yield stress (τo) by 15% to 53% and 23% to 186%, respectively based on the NS content, w/c, and temperature. An additional 1% of NS the compressive strength increased of the cement hardened by 15.1% to 72% based on the curing period, and w/c. Based on the model parameters and the experimental performance, the nano-silica is the most effective parameter in improving the properties of cement in both liquid and hardened phases.

36 citations

Journal ArticleDOI
TL;DR: The sensitivity investigation concludes that the curing time is the most dominating parameter for the prediction of the maximum stress (compression strength) of concrete with this dataset.
Abstract: In this study, the effect of two water-reducer polymers with smooth and rough surfaces on the workability, and the compression strength of concrete from an early age (1 day) up to 28 days of curing was investigated. The polymer contents used in this study varied from 0 to 0.25% (wt%). The initial ratio between water and cement ( $$ \frac{w}{c} $$ ) was 60%, and it slowly reduced to 0.46 by increasing the polymer contents. The compression strength of concrete was increased significantly with increasing the polymer contents by 24–95% depending on the polymer type, polymer content, $$ \frac{w}{c} $$ , and curing age. Because of a fiber net (netting) in the concrete when the polymers were added which leads to a decrease void between the particles, binding the cement particles, therefore, increased rapidly the viscosity for the fresh concrete and the compression strength of the hardened concrete. This study also aims to establish systematic multiscale models to predict the compression strength of concrete containing polymers and to be used by the construction projects with no theoretical restrictions. For that purpose, 88 concrete samples modified with two types of polymer (44 samples for each modification) has been tested, analyzed, and modeled. Linear, nonlinear regression, M5P-tree, and artificial neural network (ANN) approaches were used for the qualifications. In the modeling process, the most relevant parameters affect the strength of concrete, i.e., polymer incorporation ratio (0–0.25% of cement’s mass), water-to-cement ratio (0.46–0.6), and curing ages (1–28 days). Among the used approaches and based on the training data set, the model made based on the nonlinear regression, ANN, and M5P-tree models seem to be the most reliable models. The sensitivity investigation concludes that the curing time is the most dominating parameter for the prediction of the maximum stress (compression strength) of concrete with this dataset.

33 citations

References
More filters
Book
01 Jan 1986
TL;DR: In this paper, the authors present petroleum engineering science fundamentals as well as example engineering applications involving those fundamentals, including rotary drilling, drilling fluids, cements, drilling hydraulics, rotary-drilling bits, formation pore pressure and fracture resistance, casing design, directional drilling, and deviation control.
Abstract: This printing includes corrections made since the original publication in 1986. The text presents petroleum engineering science fundamentals as well as example engineering applications involving those fundamentals. Subjects covered include rotary drilling, drilling fluids, cements, drilling hydraulics, rotary-drilling bits, formation pore pressure and fracture resistance, casing design, directional drilling, and deviation control.

1,003 citations

Journal ArticleDOI
Mei-Chun Li1, Qinglin Wu, Kunlin Song, Yan Qing, Yiqiang Wu 
TL;DR: This research demonstrates the effectiveness of cellulose nanoparticles (CNPs), including microfibrillated cellulose (MFC) and cellulose nanocrystals (CNCs) in enhancing the rheological and filtration performances of bentonite (BT) water-based drilling fluids (WDFs).
Abstract: Rheological and filtration characteristics of drilling fluids are considered as two critical aspects to ensure the success of a drilling operation. This research demonstrates the effectiveness of cellulose nanoparticles (CNPs), including microfibrillated cellulose (MFC) and cellulose nanocrystals (CNCs) in enhancing the rheological and filtration performances of bentonite (BT) water-based drilling fluids (WDFs). CNCs were isolated from MFC through sulfuric acid hydrolysis. In comparison with MFC, the resultant CNCs had much smaller dimensions, more negative surface charge, higher stability in aqueous solutions, lower viscosity, and less evident shear thinning behavior. These differences resulted in the distinctive microstructures between MFC/BT- and CNC/BT-WDFs. A typical “core–shell” structure was created in CNC/BT-WDFs due to the strong surface interactions among BT layers, CNCs, and immobilized water molecules. However, a similar structure was not formed in MFC/BT-WDFs. As a result, CNC/BT-WDFs had sup...

281 citations

Journal ArticleDOI
TL;DR: The minerals and chemical compositions of the antibacterial clays investigated concluded that the pH and oxidation state buffered by the clay mineral surfaces is key to controlling the solution chemistry and redox-related reactions occurring at the bacterial cell wall.
Abstract: Natural clays have been used to heal skin infections since the earliest recorded history. Recently our attention was drawn to a clinical use of French green clay (rich in Fe-smectite) for healing Buruli ulcer, a necrotizing fasciitis ('flesh-eating' infection) caused by Mycobacterium ulcerans. These clays and others like them are interesting as they may reveal an antibacterial mechanism that could provide an inexpensive treatment for this and other skin infections, especially in global areas with limited hospitals and medical resources.Microbiological testing of two French green clays, and other clays used traditionally for healing, identified three samples that were effective at killing a broad-spectrum of human pathogens. A clear distinction must be made between 'healing clays' and those we have identified as antibacterial clays. The highly adsorptive properties of many clays may contribute to healing a variety of ailments, although they are not antibacterial. The antibacterial process displayed by the three identified clays is unknown. Therefore, we have investigated the mineralogical and chemical compositions of the antibacterial clays for comparison with non-antibacterial clays in an attempt to elucidate differences that may lead to identification of the antibacterial mechanism(s).The two French green clays used to treat Buruli ulcer, while similar in mineralogy, crystal size, and major element chemistry, have opposite effects on the bacterial populations tested. One clay deposit promoted bacterial growth whereas another killed the bacteria. The reasons for the difference in antibacterial properties thus far show that the bactericidal mechanism is not physical (e.g., an attraction between clay and bacteria), but by a chemical transfer or reaction. The chemical variables are still under investigation.Cation exchange experiments showed that the antibacterial component of the clay can be removed, implicating exchangeable cations in the antibacterial process. Furthermore, aqueous leachates of the antibacterial clays effectively kill the bacteria. Progressively heating the clay leads first to dehydration (200 degrees C), then dehydroxylation (550 degrees C or more), and finally to destruction of the clay mineral structure by (~900 degrees C). By identifying the elements lost after each heating step, and testing the bactericidal effect of the heated product, we eliminated many toxins from consideration (e.g., microbes, organic compounds, volatile elements) and identified several redox-sensitive refractory metals that are common among antibacterial clays. We conclude that the pH and oxidation state buffered by the clay mineral surfaces is key to controlling the solution chemistry and redox related reactions occurring at the bacterial cell wall.

172 citations

Journal ArticleDOI
TL;DR: In this paper, a simple model is proposed that predicts a power law relationship between the filtration rate and the shear stress at the cake surface (q γ τ 1/nw).

137 citations

Journal ArticleDOI
TL;DR: In this article, acrylamide polymer was used to modify the water-based bentonite mud to reduce the yield point and maximum shear stress produced by the mud during the drilling operation.

127 citations