scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Effect of ferrite transformation on the tensile and stress corrosion properties of type 316 L stainless steel weld metal thermally aged at 873 K

TL;DR: In this article, the effect of microstructural changes, due to transformation of delta ferrite, on the associated variations that take place in the tensile and stress corrosion properties of type 316 L stainless steel weld deposits when subjected to postweld heat treatment at 873 K for prolonged periods (up to 2000 hours).
Abstract: This article deals with the effect of the microstructural changes, due to transformation of delta ferrite, on the associated variations that take place in the tensile and stress corrosion properties of type 316 L stainless steel weld deposits when subjected to postweld heat treatment at 873 K for prolonged periods (up to 2000 hours). On aging for short durations (up to 20 hours), carbide/ carbonitride was the dominant transformation product, whereas sigma phase was dominant at longer aging times. The changes in the tensile and stress corrosion behavior of the aged weld metal have been attributed to the two competitive processes of matrix softening and hardening. Yield strength (YS) was found to depend predominantly on matrix softening only, while sig-nificant changes in the ultimate tensile strength (UTS) and the work-hardening exponent, n, occurred due to matrix hardening. Ductility and stress corrosion properties were considerably affected by both factors. Fractographic observations on the weld metal tested for stress-corrosion cracking (SCC) indicated a combination of transgranular cracking of the austenite and interface cracking.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the effectiveness of Cu as a corrosion barrier in supercritical carbon dioxide (s−CO2) by coating 316 stainless steel (316) with various thicknesses of Cu was investigated.

12 citations

Book ChapterDOI
01 Jan 2002
TL;DR: The physical and mechanical properties of austenitic stainless steels have been discussed in this paper, where the influence of chemical composition, and temperature on the various physical properties of Austenitic steel such as coefficient ofexpansion, thermal conductivity and magnetic permeability is highlighted.
Abstract: The family of austenitic stainless steels has a wide variety of grades precisely tailored for specific applications such as household and community equipment, transport, food industry, industrial equipment, chemical and power engineering, cryogenics, and building industry. The optimum choice of the grades would depend on service needs and this would require a clear understanding of the metallurgical parameters, which control the microstructure and thus the mechanical properties, formability and corrosion resistance. This chapter, in brief, deals with the physical metallurgy, welding metallurgy, and physical and mechanical properties of austenitic stainless steels. In the physical metallurgy of stainless steels the tendency of alloying elements to form different phases, the transformation of austenite to martensite during cooling or straining, hardening processes and formation of intermetallic phases, have been discussed. The influence of chemical composition, and temperature on the various physical properties of austenitic stainless steel such as coefficient ofexpansion, thermal conductivity and magnetic permeability is highlighted. Variation in mechanical properties, such as tensile, fatigue and creep strengths of austenitic stainless steels with temperature, composition and microstructure has been discussed. The mechanisms to strengthen the austenitic stainless steels by appropriate thermo-mechanical treatments, grain refinement etc. have also been addressed. Austenitic stainless steels lend themselves remarkably to deep drawing and cold rolling, where their work-hardening characteristics enable high strength levels to be attained. Weldability is excellent, and welds, which do not transform to martensite during air-cooling, have mechanical properties similar to base metal.

12 citations

Journal ArticleDOI
TL;DR: In this article, the microstructure evolution and mechanical properties of 316H stainless steel weld metals with different C contents were studied at the aging temperature of 550 °C for different aging holding time.

10 citations

Journal ArticleDOI
TL;DR: In this article, the effect of nitrogen on the tensile and stress corrosion cracking (SCC) behavior of type 316LN stainless steel was examined and it was shown that SCC resistance decreased with increasing nitrogen content.
Abstract: This paper deals with the effect of nitrogen on the tensile and stress corrosion cracking (SCC) behavior of type 316LN stainless steel. Yield stress (YS) and ultimate tensile stress (UTS) increased while the ductility [% total elongation (% TE)] decreased with increasing nitrogen content. Evaluation by conventional assessment parameters, such as ratios of UTS, % TE and SCC susceptibility index, derived by SCC testing using the slow strain rate testing (SSRT) technique indicated an improvement in SCC resistance on increasing the nitrogen content. However, crack growth rates, calculated from ratios of fracture stress from the SSRT tests in liquid paraffin and boiling 45 % magnesium chloride in SSRT tests, and the constant load tests at loads corresponding to 20 % YS in boiling 45 % magnesium chloride conclusively established that the SCC resistance of type 316LN stainless steel decreased with increasing nitrogen content.

7 citations

Book ChapterDOI
01 Jan 2020
TL;DR: In this paper, a single pass narrow gap square butt welding of 18mm-thick stainless steel AISI 316 plates using electron beam welding at constant accelerating voltage 150 kV, beam current 90 mA, welding travel speed 600 mm/min, and beam oscillation in circular pattern was investigated.
Abstract: Thick section of cold-rolled austenite stainless steel AISI 316 is widely used in heat exchangers, jet engines, furnace parts, exhaust manifolds, fast breeder test rector, etc., because of its high strength, corrosion, and pitting resistance properties at high working temperature 400–550 °C approximately. Electron beam welding is considered as highly efficient welding process in order to achieve high-quality welds with low heat-affected zone. In this paper, single-pass narrow gap square butt welding of 18-mm-thick plates using electron beam welding at constant accelerating voltage 150 kV, beam current 90 mA, welding travel speed 600 mm/min, and beam oscillation in circular pattern was investigated. The impact toughness and metallurgical properties in as-welded condition and after imparting post-weld thermal aging (PWTA) at 750 °C for 24 h were also investigated in this piece of work. The full penetration had been achieved in single pass by optimizing the relationship between welding parameters (beam accelerating voltage, beam current, welding travel speed, and beam oscillation). The results showed that welding of plates without filler metal leads to defect-free welds. The average impact toughness conducted by Charpy impact test at cryogenic temperature (−40 °C) in as-welded samples was recorded as 284 J, and after aged at 750 °C for 24 h it reduced to 180 J.

6 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors studied the stress corrosion cracking of a sensitized Type 304 stainless steel at room temperature using controlled potentials and two concentrations of sodium thiosulfate.
Abstract: The stress corrosion cracking of a sensitized Type 304 stainless steel has been studied at room temperature using controlled potentials and two concentrations of sodium thiosulfate. In both constant extension rate and constant load tests, the crack velocities attain extremely high values, up to 8 μm s-1. Scratching electrode experiments conducted at various pH values on simulated grain boundary material show that both the crack initiation frequency and crack velocity are closely related to the repassivation rate of the grain boundary material as expected on a dissolution-controlled mechanism; however, the maximum crack velocity at any potential is consistently about two orders of magnitude higher than that predicted from the electrochemical data. Frequent grain boundary separation ahead of the crack tip is thought to occur, but retarded repassivation of the grain boundary material is a necessary feature of the cracking. Effects of strain-generated martensite are discussed.

64 citations

Journal ArticleDOI
TL;DR: In this paper, Potentiostatic and isothermal immersion tests have been used to investigate pitting corrosion in the weld metal of low carbon (<0.03%C) austenitic stainless steels.
Abstract: Potentiostatic and isothermal immersion tests have been used to investigate pitting corrosion in the weld metal of low carbon (<0.03%C) austenitic stainless steels. The experiments were co...

46 citations

Journal ArticleDOI
TL;DR: In this paper, the microstructure changes and consequent deterioration in the room temperature tensile properties of type 316L stainless steel weld metal when exposed to elevated temperatures (773 to 973 K) for prolonged periods (up to 5000 hours).
Abstract: This paper deals with the microstructural changes and consequent deterioration in the room temperature tensile properties of type 316L stainless steel weld metal when exposed to elevated temperatures (773 to 973 K) for prolonged periods (up to 5000 hours). The microstructure-property correlation derived in this study is based on a variety of techniques: Magne-Gage, electrochemical extraction, X-ray diffraction, tensile testing, and both optical and electron microscopy. It has been established that the amount and morphology of the sigma phase are the key factors in determining the changes in the strength levels, total elongation, and extent of work hardening. The amount and morphology of sigma, in turn, is seen to depend on the relative kinetics of the various transformations, such as dissolution of delta-ferrite, growth of carbides,etc., shape changes in sigma, and the relative stabilities of the phases at the corresponding temperature of aging. The complicated dependence of the tensile properties on the microstrutural changes has been explained with direct quantitative evidence.

44 citations