scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Effect of fractional parameter on plane waves in a rotating elastic medium under fractional order generalized thermoelasticity

26 Nov 2012-International Journal of Applied Mechanics (Imperial College Press)-Vol. 04, Iss: 03, pp 1250030
TL;DR: In this article, a two-dimensional generalized thermoelastic coupled problem for a homogeneous isotropic and thermally conducting rotating medium in the context of the above fractional order generalized thermelasticity with two relaxation time parameters is considered.
Abstract: In ["Theory of fractional order generalized thermoelasticity," Journal of Heat Transfer132, 2010] Youssef has proposed a model in generalized thermoelasticity based on the fractional order time derivatives. The current manuscript is concerned with a two-dimensional generalized thermoelastic coupled problem for a homogeneous isotropic and thermally conducting thermoelastic rotating medium in the context of the above fractional order generalized thermoelasticity with two relaxation time parameters. The normal mode analysis technique is used to solve the resulting non-dimensional coupled governing equations of the problem. The resulting solution is then applied to two concrete problems. The effect of the fractional parameter and the time instant on the variations of different field quantities inside the elastic medium are analyzed graphically in the presence of rotation.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a stable technique based on the finite element method for inverse analysis of coupled nonlinear thermo-elastic problems is presented, where not only the time-domain is divided into small intervals, but also the space-domain was divided into several sub-domains.
Abstract: A stable technique based on the finite element method for inverse analysis of coupled nonlinear thermo-elastic problems is presented. Not only the time-domain is divided into small intervals, but also the space-domain is divided into several sub-domains. The inverse problem is solved in each sub-domain subsequently. For the inverse analysis in each sub-domain, the unknown boundary conditions are found by using an optimization method and also by employing the information obtained in the previous sub-domain. The method is sufficiently stable to be used for inverse analysis of a thermo-elastic problem under a thermal shock. Three numerical examples are provided to demonstrate the efficiency of the proposed method. The effects of the number of sub-domains are investigated in the examples.

7 citations


Additional excerpts

  • ...The study of linear/nonlinear and uncoupled/coupled thermo-elasticity problems is still an active area of research [Yang et al., 2009; Hematiyan et al., 2011; Sarkar and Lahiri, 2012; Wang et al., 2013]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the propagation of the plane waves in an initially stressed rotating magneto-thermo-elastic solid half-space in the context of fractional-order derivative thermoelasticity is studied.
Abstract: In this research article, the propagation of the plane waves in an initially stressed rotating magneto-thermoelastic solid half-space in the context of fractional-order derivative thermoelasticity is studied. The governing equations in the x–z plane are formulated and solved to obtain a cubic velocity equation that indicates the existence of three coupled plane waves. A reflection phenomenon for the incidence of a coupled plane wave for thermally insulated/isothermal surface is studied. The plane surface of the half-space is subjected to impedance boundary conditions, where normal and tangential tractions are proportional to the product of normal and tangential displacement components and frequency, respectively. The reflection coefficients and energy ratios of various reflected waves are computed numerically for a particular material and the effects of rotation, initial stress, magnetic field, fractional-order, and impedance parameters on the reflection coefficients and energy ratios are shown graphically.

6 citations

Dissertation
17 Dec 2015
TL;DR: In this paper, the authors deduce how the key aspect of the cell response activated by chemical signaling can be predicted by a simplified energetics, making use of both theoretical models and numerical simulations.
Abstract: The main bulk of this Thesis is focused on the response of cell membranes due to chemical and mechanical stimuli. Henceforth, it is mainly devoted to deduce how the key aspect of the cell response activated by chemical signaling can be predicted by a simplified energetics, making use of both theoretical models and numerical simulations. The a ention is focused on cell membranes embedding G protein-coupled receptors (GPRCs). By analyzing the behavior of cell mem- branes, one can isolate three main contributions in order to model their respon- se: (1) diffusion of receptors and transporters embedded in the lipid membrane; (2) conformational changes of the receptors; (3) membrane elasticity. Moreover, the interplay between TM confomational changes and lateral pressure of the lipid membrane against such TMs is introduced. The chemical potential of the receptor-ligand compound, deduced as the variational derivative of such energy, is compared with the one calculated by accounting for the work done by the lateral pressure. The result yields a relationship between the conformational field, the mechanical field (interpreted as either the thickness change or the areal change) and the distribution of the compounds receptor-ligand. The analysis of such resulting constitutive equation among those three quantities shows that, essentially, the reason why ligand-GPRCs compounds prefer to live on lipid ra is a necessity involving the interplay between the work performed by the lateral pressure and the need of TMs to change their conformation during ligand binding. Henceforth, mechanobiology gives a justification to the experimental findings of Kobilka and Lei ovitz, Chemistry Nobel Prizes 2012.

4 citations

Journal ArticleDOI
TL;DR: In this article, the effect of the impedance boundary on the reflection problem in a magnetized thermo-microstretch diffusion solid half-space is analyzed and the governing equations in gener...
Abstract: In this research article, the effect of the impedance boundary on the reflection problem in a magnetized thermo-microstretch diffusion solid half-space is analyzed. The governing equations in gener...

3 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the thermal wave propagation and the thermal shock problems based on the dipolar gradient elasticity and fractional order generalized thermoelasticity in orde...
Abstract: In the current work, the thermoelastic wave propagation and the thermal shock problems are studied based on the dipolar gradient elasticity and fractional order generalized thermoelasticity in orde...

1 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a linear dissipative mechanism whose Q is almost frequency independent over large frequency ranges has been investigated by introducing fractional derivatives in the stressstrain relation, and a rigorous proof of the formulae to be used in obtaining the analytic expression of Q is given.
Abstract: Summary Laboratory experiments and field observations indicate that the Q of many non-ferromagnetic inorganic solids is almost frequency independent in the range 10-2-107 cis, although no single substance has been investigated over the entire frequency spectrum. One of the purposes of this investigation is to find the analytic expression for a linear dissipative mechanism whose Q is almost frequency independent over large frequency ranges. This will be obtained by introducing fractional derivatives in the stressstrain relation. Since the aim of this research is also to contribute to elucidating the dissipating mechanism in the Earth free modes, we shall treat the dissipation in the free, purely torsional, modes of a shell. The dissipation in a plane wave will also be treated. The theory is checked with the new values determined for the Q of spheroidal free modes of the Earth in the range between 10 and 5 min integrated with the Q of Rayleigh waves in the range between 5 and 0.6 min. Another check of the theory is made with the experimental values of the Q of the longitudinal waves in an aluminium rod in the range between lo-’ and 10-3s. In both checks the theory represents the observed phenomena very satisfactorily. The time derivative which enters the stress-strain relation in both cases is of order 0.15. The present paper is a generalized version of another (Caputo 1966b) in which an elementary definition of some differential operators was used. In this paper we give also a rigorous proof of the formulae to be used in obtaining the analytic expression of Q; moreover, we present two checks of the theory with experimental data. The present paper is a generalized version of another (Caputo 1966b) in which an elementary definition of some differential operators was used. In this paper we give also a rigorous proof of the formulae to be used in obtaining the analytic expression of Q; moreover, we present two checks of the theory with experimental data. In a homogeneous isotropic elastic field the elastic properties of the substance are specified by a description of the strains and stresses in a limited portion of the field since the strains and stresses are linearly related by two parameters which describe the elastic properties of the field. If the elastic field is not homogeneous nor isotropic the properties of the field are specified in a similar manner by a larger number of parameters which also depend on the position.

3,372 citations

Journal ArticleDOI
TL;DR: In this article, a unified treatment of thermoelasticity by application and further developments of the methods of irreversible thermodynamics is presented, along with a new definition of the dissipation function in terms of the time derivative of an entropy displacement.
Abstract: A unified treatment is presented of thermoelasticity by application and further developments of the methods of irreversible thermodynamics. The concept of generalized free energy introduced in a previous publication plays the role of a ``thermoelastic potential'' and is used along with a new definition of the dissipation function in terms of the time derivative of an entropy displacement. The general laws of thermoelasticity are formulated in a variational form along with a minimum entropy production principle. This leads to equations of the Lagrangian type, and the concept of thermal force is introduced by means of a virtual work definition. Heat conduction problems can then be formulated by the methods of matrix algebra and mechanics. This also leads to the very general property that the entropy density obeys a diffusion‐type law. General solutions of the equations of thermoelasticity are also given using the Papkovitch‐Boussinesq potentials. Examples are presented and it is shown how the generalized coordinate method may be used to calculate the thermoelastic internal damping of elastic bodies.

2,287 citations

Journal ArticleDOI
01 Apr 1971

726 citations

Journal ArticleDOI
TL;DR: The model of dissipation based on memory introduced by Caputo is generalized and checked with experimental dissipation curves of various materials.
Abstract: The model of dissipation based on memory introduced by Caputo is generalized and checked with experimental dissipation curves of various materials

725 citations

Journal ArticleDOI
TL;DR: A quasi-static uncoupled theory of thermoelasticity based on the heat conduction equation with a time-fractional derivative of order α is proposed in this article.
Abstract: A quasi-static uncoupled theory of thermoelasticity based on the heat conduction equation with a time-fractional derivative of order α is proposed. Because the heat conduction equation in the case 1≤α≤2 interpolates the parabolic equation (α = 1) and the wave equation (α = 2), the proposed theory interpolates a classical thermoelasticity and a thermoelasticity without energy dissipation introduced by Green and Naghdi. The Caputo fractional derivative is used. The stresses corresponding to the fundamental solutions of a Cauchy problem for the fractional heat conduction equation are found in one-dimensional and two-dimensional cases.

482 citations