scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Effect of Gas Phase Heat Sink on Suppression of Opposed Flow Flame Spread over Thin Solid Fuels in Microgravity Environment

14 Nov 2012-Journal of Combustion (Hindawi)-Vol. 2012, pp 1-13
TL;DR: In this paper, a two-dimensional numerical model of opposed flow flame spread over thin solid fuel is formulated and modeled to study the effect of gas phase heat sink (a wire mesh placed parallel to the fuel surface) on the flame spread rate and flame extinction.
Abstract: A two-dimensional numerical model of opposed flow flame spread over thin solid fuel is formulated and modeled to study the effect of gas phase heat sink (a wire mesh placed parallel to the fuel surface) on the flame-spread rate and flame extinction. The work focuses on the performance of the wire mesh in microgravity environment at an oxygen concentration 21%. The simulations were carried out for various mesh parameters (wire diameter, “” and number of wires per unit length, “”) and mesh distance perpendicular to fuel surface “”. Simulations show that wire mesh is effective in reducing flame-spread rate when placed at distance less than flame width (which is about 1 cm). Mesh wire diameter is determined not to have major influence on heat transfer. However, smaller wire diameter is preferred for better aerodynamics and for increasing heat transfer surface area (here prescribed by parameter “”). Flame suppression exhibits stronger dependence on number of wires per unit length; however, it is relatively insensitive to number of wires per unit length beyond certain value (here 20 cm−1).
Citations
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
01 Jul 1968-Nature
TL;DR: The Thermophysical Properties Research Literature Retrieval Guide as discussed by the authors was published by Y. S. Touloukian, J. K. Gerritsen and N. Y. Moore.
Abstract: Thermophysical Properties Research Literature Retrieval Guide Edited by Y. S. Touloukian, J. K. Gerritsen and N. Y. Moore Second edition, revised and expanded. Book 1: Pp. xxi + 819. Book 2: Pp.621. Book 3: Pp. ix + 1315. (New York: Plenum Press, 1967.) n.p.

1,240 citations

References
More filters
Book ChapterDOI

[...]

01 Jan 2012

139,059 citations

Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations


"Effect of Gas Phase Heat Sink on Su..." refers background in this paper

  • ...In the past decade, more sophisticated experiments [8, 9] and more complex numerical approaches [10] in higher dimensions have been adopted to unravel the physics of flame-spread phenomena, yet complexity of problem due to nonlinear interactions between flow, heat and mass transfer along with chemistry in both solid and gas phases has prevented a complete understanding....

    [...]

Book
01 Jan 1980
TL;DR: In this article, the authors focus on heat and mass transfer, fluid flow, chemical reaction, and other related processes that occur in engineering equipment, the natural environment, and living organisms.
Abstract: This book focuses on heat and mass transfer, fluid flow, chemical reaction, and other related processes that occur in engineering equipment, the natural environment, and living organisms. Using simple algebra and elementary calculus, the author develops numerical methods for predicting these processes mainly based on physical considerations. Through this approach, readers will develop a deeper understanding of the underlying physical aspects of heat transfer and fluid flow as well as improve their ability to analyze and interpret computed results.

21,858 citations

Journal ArticleDOI
TL;DR: In this paper, numerical heat transfer and fluid flow are used to transfer heat from a nuclear power plant to a nuclear fluid flow system, and the resulting fluid flow is used for nuclear power plants.
Abstract: (1981). Numerical Heat Transfer and Fluid Flow. Nuclear Science and Engineering: Vol. 78, No. 2, pp. 196-197.

3,386 citations


"Effect of Gas Phase Heat Sink on Su..." refers methods in this paper

  • ...The system of coupled partial differential equations for the flow and combustion in the gas phase is solved numerically by SIMPLER algorithm [21]....

    [...]

Journal ArticleDOI
01 Jul 1968-Nature
TL;DR: The Thermophysical Properties Research Literature Retrieval Guide as discussed by the authors was published by Y. S. Touloukian, J. K. Gerritsen and N. Y. Moore.
Abstract: Thermophysical Properties Research Literature Retrieval Guide Edited by Y. S. Touloukian, J. K. Gerritsen and N. Y. Moore Second edition, revised and expanded. Book 1: Pp. xxi + 819. Book 2: Pp.621. Book 3: Pp. ix + 1315. (New York: Plenum Press, 1967.) n.p.

1,240 citations


"Effect of Gas Phase Heat Sink on Su..." refers background in this paper

  • ...Here h is the heat transfer coefficient for external transverse flow across cylindrical wires given by [14]...

    [...]