scispace - formally typeset

Journal ArticleDOI

Effect of gusty inflow on the jet-switching characteristics of a plunging foil

12 Nov 2020-Physics of Fluids (AIP Publishing LLC AIP Publishing)-Vol. 32, Iss: 11, pp 117105-117105

Abstract: The effect of stochastic inflow fluctuations on the jet-switching characteristics of a harmonically plunging elliptic foil at a low Reynolds number regime has been analyzed in the present study. The inflow fluctuations are generated by simulating an Ornstein–Uhlenbeck process—a stationary Gauss–Markov process—with a chosen correlation function. In the absence of fluctuations, quasi-periodic movement of the wake vortices plays a key role in bringing out jet-switching at κh ≥ 1.5. However, fluctuating inflow alters the organized arrangement of the vortex street even at a lower κh (κh = 1.0), giving way to an advanced jet-switching onset. More frequent switching with a larger deflection angle is also observed at κh = 1.5 as compared to the no fluctuation case. Effects of inflow timescales on the deflection angle and switching frequency of the wake are investigated by varying the input correlation-lengths. The underlying flow physics are investigated through a qualitative study of the near-field interactions as well as various quantitative measures derived from the unsteady flow-field.
Topics: Inflow (56%), Vortex (51%), Kármán vortex street (50%)
References
More filters

Journal ArticleDOI
01 Mar 2001-Siam Review
TL;DR: The article is built around $10$ MATLAB programs, and the topics covered include stochastic integration, the Euler--Maruyama method, Milstein's method, strong and weak convergence, linear stability, andThe stochastics chain rule.
Abstract: A practical and accessible introduction to numerical methods for stochastic differential equations is given. The reader is assumed to be familiar with Euler's method for deterministic differential equations and to have at least an intuitive feel for the concept of a random variable; however, no knowledge of advanced probability theory or stochastic processes is assumed. The article is built around $10$ MATLAB programs, and the topics covered include stochastic integration, the Euler--Maruyama method, Milstein's method, strong and weak convergence, linear stability, and the stochastic chain rule.

2,267 citations


MonographDOI
14 Sep 2000-

1,163 citations


Journal ArticleDOI
Jungwoo Kim1, Dongjoo Kim1, Haecheon Choi1Institutions (1)
Abstract: A new immersed-boundary method for simulating flows over or inside complex geometries is developed by introducing a mass source/sink as well as a momentum forcing. The present method is based on a finite-volume approach on a staggered mesh together with a fractional-step method. Both momentum forcing and mass source are applied on the body surface or inside the body to satisfy the no-slip boundary condition on the immersed boundary and also to satisfy the continuity for the cell containing the immersed boundary. In the immersed-boundary method, the choice of an accurate interpolation scheme satisfying the no-slip condition on the immersed boundary is important because the grid lines generally do not coincide with the immersed boundary. Therefore, a stable second-order interpolation scheme for evaluating the momentum forcing on the body surface or inside the body is proposed. Three different flow problems (decaying vortices and flows over a cylinder and a sphere) are simulated using the immersed-boundary method proposed in this study and the results agree very well with previous numerical and experimental results, verifying the accuracy of the present method.

987 citations


Journal ArticleDOI
Manoochehr Koochesfahani1Institutions (1)
24 Mar 1987-AIAA Journal
Abstract: The vortical flow patterns in the wake of a NACA 0012 airfoil pitching at small amplitudes are studied in a low speed water channel. it is shown that a great deal of control can be exercised on the structure of the wake by the control of the frequency, amplitude and also the shape of the oscillation waveform. An important observation in this study has been the existence of an axial flow along the cores of the wake vortices. Estimates of the magnitude of the axial flow suggest a linear dependence on the oscillation frequency and amplitude.

619 citations


Journal ArticleDOI
Daniel T. Gillespie1Institutions (1)
01 Aug 1996-Physical Review E
TL;DR: The exact simulation algorithm used here to illustrate the zero-\ensuremath{\tau} limit theorem is derived for the Ornstein-Uhlenbeck process X(t) and its time integral Y(t).
Abstract: A numerical simulation algorithm that is exact for any time step \ensuremath{\Delta}tg0 is derived for the Ornstein-Uhlenbeck process X(t) and its time integral Y(t). The algorithm allows one to make efficient, unapproximated simulations of, for instance, the velocity and position components of a particle undergoing Brownian motion, and the electric current and transported charge in a simple R-L circuit, provided appropriate values are assigned to the Ornstein-Uhlenbeck relaxation time \ensuremath{\tau} and diffusion constant c. A simple Taylor expansion in \ensuremath{\Delta}t of the exact simulation formulas shows how the first-order simulation formulas, which are implicit in the Langevin equation for X(t) and the defining equation for Y(t), are modified in second order. The exact simulation algorithm is used here to illustrate the zero-\ensuremath{\tau} limit theorem. \textcopyright{} 1996 The American Physical Society.

470 citations