scispace - formally typeset
Proceedings ArticleDOI

Effect of sputtering power on the growth of Ru films deposited by magnetron sputtering

13 Apr 2016-Vol. 1724, Iss: 1, pp 020073
Abstract: Ruthenium is deposited by DC magnetron sputtering at different powers and is characterized. The effect of sputtering power on the electrical and structural properties of the film is investigated experimentally. High resolution X-ray diffraction is used to characterize the microstructure of Ru films deposited on SiO2 surface. The peak (002) is more sharp and intense with full width at half maximum (FWHM) of 0.37° at 250W. The grain size increases with increase in sputtering power improving the crystallinity of the film. The film deposited at high sputtering power also showed lower resistivity (12.40 µΩ-cm) and higher mobility (4.82 cm2/V.s) as compared to the film deposited at low power. The surface morphology of the film is studied by atomic force microscopy (AFM).
Citations
More filters

Journal ArticleDOI
05 Jul 2020-
Abstract: In this paper, the radio frequency (RF) magnetron sputtering (MS) method was utilized to fabricate multiple sets of the iron film samples under different sputtering powers. With the help of X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and vibrating sample magnetometer (VSM), how the sputtering power affected the structure, morphology and magnetic properties of the iron film was studied. XRD results showed that all Fe films have a polycrystalline bcc structure and (110) preferred orientation. According to the Bragg equation calculation, the larger the sputtering power, the larger the average grain size, which is consistent with the results of AFM particle size analysis. The main reason is that the sputtering power affects the grain growth mode. As the sputtering power increases, it gradually changes from a small island-like growth to a thick columnar growth. However, from the surface morphology and height profile, we saw that the iron film deposited under 230 W had the most uniform grain size distribution and the grain size was relatively small. This is why thin films deposited under this condition have the best soft magnetic properties. The saturation magnetization (Ms) reaches 1566 emu/cm3, coercivity (Hc) is 112 Oe, and squareness ratio (Mr/Ms) is 0.40. Therefore, iron film prepared under 230 W has good comprehensive properties (highest Ms, lower Hc and Mr/Ms) that provide an experimental basis for further thin film research work.

5 citations


Journal ArticleDOI
TL;DR: The electrodeposited Cu, Cu-SiC FGC has the potential to serve as an inexpensive touch surface alternative for the healthcare industries because of its antibacterial and anti-adhesion properties.
Abstract: The current work deals with a time-dependent study to track the antibacterial action of electrodeposited Cu, Cu-SiC functionally graded coating (FGC) against Escherichia coli NCIM 2931 (Gram-negative) and Bacillus subtilis NCIM 2063 (Gram-positive). After 24 h of incubation, the Cu, Cu-SiC FGC causes 7 Escherichia coli NCIM 2931 and 10 Bacillus subtilis NCIM 2063 log reduction of planktonic cells. The outer membrane permeabilization experiment proves that the intake of excessive Cu ions leads to the damage of bacterial cell membrane followed by lipid degradation. The thiobarbituric acid reactive substances assay reveals that Cu ions released from the surface of Cu, Cu-SiC FGC triggers the oxidative degeneration of phospholipids (most abundant constituent of bacterial cell membrane). This was further cross-verified using atomic absorption spectroscopy. From 0 to 24 h, the bacterial morphology is characterized using transmission electron microscope and scanning electron microscope which shows the cytoplasmic leakage and cell death. The Cu, Cu-SiC FGC also exhibits hydrophobic surface (contact angle of 144°) which prevents the bacterial adherence to the surface and thus, inhibits them to penetrate into its bulk. The observed results of antibacterial and anti-adhesion properties of Cu, Cu-SiC FGC are compared with single-layered metallic Cu and Cu-SiC nanocomposite coatings. Hence, the electrodeposited Cu, Cu-SiC FGC has the potential to serve as an inexpensive touch surface alternative for the healthcare industries.

3 citations


Journal ArticleDOI
Abstract: Ru compacts with mean grain size of 4~5 μm were prepared by vacuum hot pressing (VHP), and the compacts with the maximum density of 12.2 g/cm was obtained with sintering time of 2 h. X-ray diffractometer (XRD) revealed that there was a texture change with sintering time. The microstructure of Ru compacts was observed by electron backscatter diffraction (EBSD) and field emission scanning electron microscope (FSEM). Thus, the microstructure evolution with sintering time were discussed.

References
More filters

Journal ArticleDOI
01 Feb 2005-Tribology Letters
Abstract: Microelectromechanical systems (MEMS) radio frequency (RF) switches hold great promise in a myriad of commercial, aerospace, and military applications. However, there is little understanding of the factors determining the performance and reliability of these devices. Fundamental studies of hot-switched gold (Au) contacts were conducted using a micro/nanoadhesion apparatus as a switch simulator. Experiments were conducted in a well defined air environment under precisely controlled operating conditions. Fundamental properties were connected to performance with an emphasis on the effects of contact force and electric current on contact resistance (R), microadhesion, and reliability/durability. Electric current had the most profound effect on switch performance. Observations at low current (1–10 μA) include: (1) slightly higher R; (2) asperity creep; (3) high adhesion after rapid switching; (4) switch bouncing; and (5) reasonable durability. Conversely, observations at high current (1–10 mA) include: (1) slightly lower R; (2) melting; (3) no measurable adhesion; (4) less propensity for switch bouncing; (5) necking of contacts; and (6) poor reliability and durability due to switch shorting. Low current behavior was dominated by the propensity to form smooth surface contacts by hammering, which led to high van der Waals force. High current behavior was dominated by the formation of Au nanowires that bridge the contact during separation. Data suggest the presence of an adventitious film containing carbon and oxygen. Aging of the contacts in air was found to reduce adhesion.

201 citations


Journal ArticleDOI
Abstract: Innovations in relevant micro-contact areas are highlighted, these include, design, contact resistance modeling, contact materials, performance and reliability. For each area the basic theory and relevant innovations are explored. A brief comparison of actuation methods is provided to show why electrostatic actuation is most commonly used by radio frequency microelectromechanical systems designers. An examination of the important characteristics of the contact interface such as modeling and material choice is discussed. Micro-contact resistance models based on plastic, elastic-plastic and elastic deformations are reviewed. Much of the modeling for metal contact micro-switches centers around contact area and surface roughness. Surface roughness and its effect on contact area is stressed when considering micro-contact resistance modeling. Finite element models and various approaches for describing surface roughness are compared. Different contact materials to include gold, gold alloys, carbon nanotubes, composite gold-carbon nanotubes, ruthenium, ruthenium oxide, as well as tungsten have been shown to enhance contact performance and reliability with distinct trade offs for each. Finally, a review of physical and electrical failure modes witnessed by researchers are detailed and examined.

109 citations


Journal ArticleDOI
Abstract: This study presents a basic step toward the selection methodology of electric contact materials for microelectromechanical systems (MEMS) metal contact switches. This involves the interrelationship between two important parameters, resistivity and hardness, since they provide the guidelines and assessment of contact resistance, wear, deformation and adhesion characteristics of MEMS switches. For this purpose, thin film alloys of three noble metals, platinum (Pt), rhodium (Rh) and ruthenium (Ru) with gold (Au), were investigated. The interrelationship between resistivity and hardness was established for three levels of alloying of these metals with gold. Thin films of gold (Au), platinum (Pt), ruthenium (Rh) and rhodium (Ru) were also characterized to obtain their baseline data for comparison. All films were deposited on silicon substrates. When Ru, Rh and Pt are alloyed with Au, their hardness generally decreases but resistivity increases. This decrease or increase was, in general, dependent upon the amount of alloying.

102 citations


11


Journal ArticleDOI
Abstract: This paper presents an mN-level contact and restoring force RF microelectromechanical systems metal-contact switch exhibiting high reliability, high linearity, and high power handing for dc-40-GHz applications. The device, which is insensitive to stress and temperature effects, achieves 1.2-1.5 mN of contact force (per contact) from 80 to 90 V and 1.0 mN of restoring force (per contact). The up-state capacitance is 8 fF, resulting in an isolation of 46, 31, and 14 dB at 1, 6, and 40 GHz, respectively. Measured results show switch resistances of 1-2 Ω and a reliability of >; 100 million cycles at 2-5 W under cold switching at 100 mW under hot-switching conditions, in an unpackaged and standard laboratory environment. Furthermore, the device was tested under prolonged hold-down conditions and demonstrated excellent RF power handling (>;10 W) and dc current handling (>;1 A) capability.

81 citations


Journal ArticleDOI
Abstract: -di- tert-butylacetamidinato "ruthenium !II" dicarbonyl. The CVD Þlms were grownwithout any coreactant, while the ALD Þlms used ammonia as a coreactant. The Þ lms are Þne-grained polycrystalline rutheniumwith high purity !! 0.2% impurities ".R u grew as a continuous, electrically conductive, pinhole-free Þlm on tungsten nitride !WN "Þlms even for Þlms as thin as 2 nm. The resistivities of the Þlms match those of pure sputtered ruthenium of the same thickness.Roughness is ! 2% of the Þlm thickness. The Þ lms are very conformal, with 80% step coverage over holes with high aspect ratios!40:1 ". T his thermal process does not use any oxidant or plasma as a second reagent, thereby avoiding damage to sensitivesubstrates. The ALD growth rate can reach 1.5  /cycle at a substrate temperature of 300 iC .© 2007 The Electrochemical Society . #DOI: 10.1 149/1.2789294 $ All rights reserved.Manuscript submitted May 9, 2007; revised manuscript received August 9, 2007. A vailable electronically October 11, 2007.

78 citations


12