scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Effect of the fluid-wall interaction on freezing of confined fluids: Toward the development of a global phase diagram

14 Jun 2000-Journal of Chemical Physics (American Institute of PhysicsAIP)-Vol. 112, Iss: 24, pp 11048-11057
TL;DR: In this article, the effect of the fluid-wall interaction energy on the shift of the freezing temperature and on the fluid structure is considered, using a novel approach to calculate the free energy surface based on Landau theory and order parameter formulation.
Abstract: We report molecular simulation studies of the freezing behavior of fluids in nano-porous media. The effect of confinement is to induce spatial constraints as well as energetic heterogeneity on the confined fluid, thereby altering the bulk phase behavior drastically. We consider the effect of the fluid-wall interaction energy on the shift of the freezing temperature and on the fluid structure, using a novel approach to calculate the free energy surface based on Landau theory and order parameter formulation. Corresponding states theory is then used to map out the global freezing behavior of a Lennard-Jones (LJ) fluid in model slit-shaped pores of varying fluid-wall interaction strengths. Using LJ parameters fitted to thermophysical property behavior, we predict the qualitative freezing behavior for a variety of fluids and nano-porous materials, based on a global freezing diagram. We have attempted to verify these predictions by comparing with experimental data for several systems, and show that in these cases, the experimental observations and the predictions are in agreement.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
14 Jul 2005-Nature
TL;DR: High levels of selective sorption of acetylene molecules as compared to a very similar molecule, carbon dioxide, onto the functionalized surface of a MOM are reported.
Abstract: Metal-organic microporous materials (MOMs) have attracted wide scientific attention owing to their unusual structure and properties, as well as commercial interest due to their potential applications in storage, separation and heterogeneous catalysis. One of the advantages of MOMs compared to other microporous materials, such as activated carbons, is their ability to exhibit a variety of pore surface properties such as hydrophilicity and chirality, as a result of the controlled incorporation of organic functional groups into the pore walls. This capability means that the pore surfaces of MOMs could be designed to adsorb specific molecules; but few design strategies for the adsorption of small molecules have been established so far. Here we report high levels of selective sorption of acetylene molecules as compared to a very similar molecule, carbon dioxide, onto the functionalized surface of a MOM. The acetylene molecules are held at a periodic distance from one another by hydrogen bonding between two non-coordinated oxygen atoms in the nanoscale pore wall of the MOM and the two hydrogen atoms of the acetylene molecule. This permits the stable storage of acetylene at a density 200 times the safe compression limit of free acetylene at room temperature.

1,301 citations

Journal ArticleDOI
TL;DR: In this article, the effects of size and confinement at the nanometre size scale on both the melting temperature and the glass transition temperature, Tm, are reviewed, and it seems that the existing theories of Tg are unable to explain the range of behaviours seen at the nano-scale.
Abstract: In this article, the effects of size and confinement at the nanometre size scale on both the melting temperature, Tm, and the glass transition temperature, Tg, are reviewed. Although there is an accepted thermodynamic model (the Gibbs–Thomson equation) for explaining the shift in the first-order transition, Tm, for confined materials, the depression of the melting point is still not fully understood and clearly requires further investigation. However, the main thrust of the work is a review of the field of confinement and size effects on the glass transition temperature. We present in detail the dynamic, thermodynamic and pseudo-thermodynamic measurements reported for the glass transition in confined geometries for both small molecules confined in nanopores and for ultrathin polymer films. We survey the observations that show that the glass transition temperature decreases, increases, remains the same or even disappears depending upon details of the experimental (or molecular simulation) conditions. Indeed, different behaviours have been observed for the same material depending on the experimental methods used. It seems that the existing theories of Tg are unable to explain the range of behaviours seen at the nanometre size scale, in part because the glass transition phenomenon itself is not fully understood. Importantly, here we conclude that the vast majority of the experiments have been carried out carefully and the results are reproducible. What is currently lacking appears to be an overall view, which accounts for the range of observations. The field seems to be experimentally and empirically driven rather than responding to major theoretical developments.

900 citations

Journal ArticleDOI
TL;DR: In this article, the coordination space is defined as the space where the coordination bond plays an important role in the formation of the spatial structures and where various physical properties are exhibited, and the coordination spaces provided by porous coordination polymers, and their uniqueness is illustrated with current representative results.

830 citations

Journal ArticleDOI
TL;DR: Both simple and more complex adsorbates that are confined in various environments (slit or cylindrical pores and also disordered porous materials) are considered and how confinement affects the glass transition is addressed.
Abstract: We present a review of experimental, theoretical, and molecular simulation studies of confinement effects on freezing and melting We consider both simple and more complex adsorbates that are confined in various environments (slit or cylindrical pores and also disordered porous materials) The most commonly used molecular simulation, theoretical and experimental methods are first presented We also provide a brief description of the most widely used porous materials The current state of knowledge on the effects of confinement on structure and freezing temperature, and the appearance of new surface-driven and confinement-driven phases are then discussed We also address how confinement affects the glass transition

640 citations

Journal ArticleDOI
TL;DR: A review of experimental work on freezing and melting in confinement is presented in this paper, where a range of systems, from metal oxide gels to porous glasses to novel nanoporous materials, are discussed.
Abstract: A review of experimental work on freezing and melting in confinement is presented. A range of systems, from metal oxide gels to porous glasses to novel nanoporous materials, is discussed. Features such as melting-point depression, hysteresis between freezing and melting, modifications to bulk solid structure and solid-solid transitions are reviewed for substances such as helium, organic fluids, water and metals. Recent work with well characterized assemblies of cylindrical pores like MCM-41 and graphitic microfibres with slit pores has suggested that the macroscopic picture of melting and freezing breaks down in pores of molecular dimensions. Applications of the surface force apparatus to the study of freezing and melting phenomena in confinement are discussed in some detail. This instrument is unique in allowing the study of conditions in a single pore, without the complications of pore blockage and connectivity effects. The results have confirmed the classical picture of melting-point depression in larger pores, and allowed the direct observation of capillary condensation of solid from vapour. Other results include the measurement of solvation forces across apparently fluid films below the bulk melting point and a solid-like response to shear of films above the bulk melting point. These somewhat contradictory findings highlight the difficulty of using bulk concepts to define the phase state of a substance confined to nanoscale pores.

515 citations

References
More filters
Journal ArticleDOI
TL;DR: The technique is demonstrated by application to porous silicas and is shown to give pore size distributions comparable to those obtained by the conventional gas desorption method for pore sizes in the range 5 to 50 nm.
Abstract: A new simple and rapid method to determine pore size distributions is described which employs a simple nuclear magnetic resonance (NMR) apparatus. The method exploits the depression of the melting point of a crystalline solid confined within a pore, which is dependent on the pore diameter. The melting point distribution is determined by analyzing the NMR signal as a function of temperature. The technique is demonstrated by application to porous silicas and is shown to give pore size distributions comparable to those obtained by the conventional gas desorption method for pore sizes in the range 5 to 50 nm.

417 citations

Journal ArticleDOI
20 Mar 1998-Langmuir
TL;DR: In this paper, the authors developed a realistic model for studying adsorption in porous glasses which reproduces the complex structure of these materials, and the model porous material is generated by a quench molecular dynamics procedure which mimics the processes by which Vycor glass and controlled-pore glasses are produced.
Abstract: We have developed a realistic model for studying adsorption in porous glasses which reproduces the complex structure of these materials. The model porous material is generated by a quench molecular dynamics procedure which mimics the processes by which Vycor glass and controlled-pore glasses are produced. We examine this procedure and the resulting model materials by a variety of methods and find that they have porosities, pore sizes, and surface areas very similar to the real glasses. These simulated glasses have precisely known properties (surface area, pore size distribution, etc.), in contrast to experimental glasses; computer experiments on such model glasses can therefore be used to test new and existing experimental methods of characterization. We calculate the adsorption isotherms for a model of nitrogen adsorbing onto these materials and analyze these data using the BET isotherm. The BET monolayer density exhibits systematic variations with both the average pore size and the porosity of the model...

406 citations

Journal ArticleDOI
TL;DR: In this article, the free energy barrier for the formation of body-centered-cubic (bcc) crystallites from the melt was shown to be a surprisingly low free-energy barrier.
Abstract: We show how relatively standard Monte Carlo techniques can be used to probe the free-energy barrier that separates the crystalline phase from the supercooled liquid. As an illustration, we apply our approach to a system of soft, repulsive spheres [v(r)=(/r)12]. This system is known to have a stable face-centered-cubic (fcc) crystal structure up to the melting temperature. However, in our simulations, we find that there is a surprisingly low free-energy barrier for the formation of body-centered-cubic (bcc) crystallites from the melt. In contrast, there appears to be no `easy' path from the melt to the (stable) fcc phase. These observations shed new light on the results of previous simulations that studied the dynamics of crystal nucleation in the r–12 system. We argue that the techniques developed in this paper can be used to gain insight in the process of homogeneous nucleation under conditions where direct, dynamical simulations are inconclusive or prohibitively expensive.

372 citations

Journal ArticleDOI
TL;DR: In order to clarify the origin of the hysteresis between freezing and melting of pore water, this paper performed x-ray diffraction measurements of water confined inside the cylindrical pores of seven kinds of ordered mesoporous materials with different pore radii (1.2-2.9 nm).
Abstract: In order to clarify the origin of the hysteresis between freezing and melting of pore water, we performed x-ray diffraction measurements of water confined inside the cylindrical pores of seven kinds of siliceous MCM-41 (a member of ordered mesoporous materials denoted by Mobil Oil researchers) with different pore radii (1.2–2.9 nm) and the interconnected pores of Vycor glass as a function of temperature. The hysteresis effect depends markedly on the size of the cylindrical pores: the hysteresis is negligibly small in smaller pores and becomes remarkable in larger pores. This strongly suggests that the hysteresis is arisen from size-dependent supercooling of water confined to the mesopores. For the water confined to the mesopores with pore radius of 1.2 nm, a continuous transition between a liquid and a solid precedes the first-order freezing transition of the pore water which would occur by the same mechanism as in bulk water.

286 citations

Journal ArticleDOI
TL;DR: In this article, the phase equilibria of an open system characterized by the variables μ (chemical potential), T (temperature), and H (wall separation) are derived for the shape of lines of coexistence.
Abstract: The thermodynamics of fluids confined between two adsorbing solid substrates (walls) is revisited. Attention is focused on the phase equilibria of an open system characterized by the variables μ (chemical potential), T (temperature), and H (wall separation). Clapeyron equations for the shape of lines of coexistence are derived and used to interpret the results of earlier calculations of two first‐order transitions, namely capillary condensation of an undersaturated ‘‘gas’’ to ‘‘liquid’’ and prewetting (thick–thin film transition) at finite H. At such transitions the adsorption Γ and the solvation force f jump discontinuously. Criticality of a confined fluid is associated with the divergence of the derivatives (∂Γ/∂μ)T,H and (∂2Γ/∂μ2)T,H or equivalently, with the divergence of (∂f/∂H)T,μ and (∂2f/∂H2)T,μ. The presence of the additional field variable H, and its conjugate density f, implies that the phase equilibria of a confined fluid can be much richer than those of a bulk fluid or of a single interface (H=∞). By extending the formalism to multicomponent systems Clapeyron equations are derived for the coexistence of phases in confined fluid mixtures. An equation for the shift in chemical potential (or concentration) of the phase separation curve of a binary liquid mixture resulting from confinement at constant pressure and temperature is presented. This equation, which becomes exact for large separations H, is the appropriate analog for mixtures of the Kelvin equation used to describe capillary condensation in pure fluids; it can also be regarded as a generalization to nonzero concentrations of the Ostwald–Freundlich formula for the dependence of solubility on particle size. Our analysis provides a framework for interpreting recent solvation force measurements on phase‐separating liquid mixtures.

283 citations