scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Effect of uniform and Dolph-Chebyshev excitations on the performance of circular array antennas

06 Oct 2017-Turkish Journal of Electrical Engineering and Computer Sciences (The Scientific and Technological Research Council of Turkey)-Vol. 25, Iss: 5, pp 3660-3672
TL;DR: This paper presents the design and simulation of microstrip circular antenna arrays and studies the effect of excitation with uniform and Dolph–Chebyshev distribution to find that these antenna arrays are suitable for radar application.
Abstract: This paper presents the design and simulation of microstrip circular antenna arrays and studies the effect of excitation with uniform and Dolph–Chebyshev distribution. With side lobe level of 20 dB and 8 microstrip circular patches, the circular array has been demonstrated with minimum grating lobes. The effects of patch and antenna array length on directivity, radiation patterns, and side lobe are also studied in detail. It is found that these antenna arrays are suitable for radar application.
Citations
More filters
01 Jan 2003
TL;DR: In this paper, a new method for the synthesis of low sidelobe beampatterns is presented, which enables beamwidth and sidelobe level to be adjusted with relative independence.
Abstract: A new method for the synthesis of low sidelobe beampatterns is presented, which enables beamwidth and sidelobe level to be adjusted with relative independence. Unlike existing methods for the synthesis of arbitrary beampatterns, the proposed method is based on a modification of the Dolph-Chebyshev design and requires only a few parameters to be optimized, regardless of the array size. Due to its much lower complexity, the method is implementable in wireless communications applications requiring fast and cheap, adaptive algorithms for low sidelobe arrays. The method is applicable, for instance, to the design of adaptive sector-like antennas with uniform circular arrays (UCAs), and to the design of quasi-steering-invariant beampatterns with uniform linear arrays (ULAs).

27 citations

References
More filters
Book
01 Jan 1982
TL;DR: The most up-to-date resource available on antenna theory and design as mentioned in this paper provides an extended coverage of ABET design procedures and equations making meeting ABET requirements easy and preparing readers for authentic situations in industry.
Abstract: The most-up-to-date resource available on antenna theory and design Expanded coverage of design procedures and equations makes meeting ABET design requirements easy and prepares readers for authentic situations in industry New coverage of microstrip antennas exposes readers to information vital to a wide variety of practical applicationsComputer programs at end of each chapter and the accompanying disk assist in problem solving, design projects and data plotting-- Includes updated material on moment methods, radar cross section, mutual impedances, aperture and horn antennas, and antenna measurements-- Outstanding 3-dimensional illustrations help readers visualize the entire antenna radiation pattern

14,065 citations


"Effect of uniform and Dolph-Chebysh..." refers background or methods in this paper

  • ...The simple and effective design methodology of a circular patch for each mode is presented in [12]....

    [...]

  • ...CAAs have been studied in various aspects, such as analytical mathematical modeling of array factor (AF), nonuniform excitation of elements [9], optimization of configuration for beam-forming, high directive applications [10], and optimization of radiation pattern to achieve improved side-lobe levels [11,12]....

    [...]

Journal ArticleDOI
01 Jun 1946
TL;DR: In this article, a one-parameter family of current distributions for symmetric broadside arrays of equally spaced point sources energized in phase was derived, and design curves relating the value of the parameter to side-lobe level as well as the relative current values expressed as a function of side lobe level were given for the cases of 8-, 12-, 16-, 20-, and 24-element linear arrays.
Abstract: A one-parameter family of current distributions is derived for symmetric broadside arrays of equally spaced point sources energized in phase. For each value of the parameter, the corresponding current distribution gives rise to a pattern in which (1) all the side lobes are at the same level; and (2) the beam width to the first null is a minimum for all patterns arising from symmetric distributions of in-phase currents none of whose side lobes exceeds that level. Design curves relating the value of the parameter to side-lobe level as well as the relative current values expressed as a function of side-lobe level are given for the cases of 8-, 12-, 16-, 20-, and 24-element linear arrays.

1,096 citations


"Effect of uniform and Dolph-Chebysh..." refers background in this paper

  • ...Dolph originally introduced Chebyshev polynomials for the excitation of isotropic antenna arrays to achieve equal leveled side lobes [18]....

    [...]

Book
01 Jan 2006
TL;DR: In this article, the authors define the notion of conformal antennas as follows: 1.1 Linear Arrays 2.2 Discrete Elements 2.3 Directional Radiators 2.4 Surface Waves 3.3.4 Finite Difference Time Domain Methods (FDTD) 3.4.5 Finite Element Method (FEM).
Abstract: Preface. Abbreviations and Acronyms. 1 INTRODUCTION. 1.1 The Definition of a Conformal Antenna. 1.2 Why Conformal Antennas? 1.3 History. 1.4 Metal Radomes. 1.5 Sonar Arrays. References. 2 CIRCULAR ARRAY THEORY. 2.1 Introduction. 2.2 Fundamentals. 2.2.1 Linear Arrays. 2.2.2 Circular Arrays. 2.3 Phase Mode Theory. 2.3.1 Introduction. 2.3.2 Discrete Elements. 2.3.3 Directional Elements. 2.4 The Ripple Problem in Omnidirectional Patterns. 2.4.1 Isotropic Radiators. 2.4.2 Higher-Order Phase Modes. 2.4.3 Directional Radiators. 2.5 Elevation Pattern. 2.6 Focused Beam Pattern. References. 3 THE SHAPES OF CONFORMAL ANTENNAS. 3.1 Introduction. 3.2 360- Coverage. 3.2.1 360- Coverage Using Planar Surfaces. 3.2.2 360- Coverage Using a Curved Surface. 3.3 Hemispherical Coverage. 3.3.1 Introduction. 3.3.2 Hemispherical Coverage Using Planar Surfaces. 3.3.3 Half Sphere. 3.3.4 Cone. 3.3.5 Ellipsoid. 3.3.6 Paraboloid. 3.3.7 Comparing Shapes. 3.4 Multifaceted Surfaces. 3.5 References. 4 METHODS OF ANALYSIS. 4.1 Introduction. 4.2 The Problem. 4.3 Electrically Small Surfaces. 4.3.1 Introduction. 4.3.2 Modal Solutions. 4.3.2.1 Introduction. 4.3.2.2 The Circular Cylinder. 4.3.2.3 A Unit Cell Approach. 4.3.3 Integral Equations and the Method of Moments. 4.3.4 Finite Difference Time Domain Methods (FDTD). 4.3.4.1 Introduction. 4.3.4.2 Conformal or Contour-Patch (CP) FDTD. 4.3.4.3 FDTD in Global Curvilinear Coordinates. 4.3.4.4 FDTD in Cylindrical Coordinates. 4.3.5 Finite Element Method (FEM). 4.3.5.1 Introduction. 4.3.5.2 Hybrid FE-BI Method. 4.4 Electrically Large Surfaces. 4.4.1 Introduction. 4.4.2 High-Frequency Methods for PEC Surfaces. 4.4.3 High-Frequency Methods for Dielectric Coated Surfaces. 4.5 Two Examples. 4.5.1 Introduction. 4.5.2 The Aperture Antenna. 4.5.3 The Microstrip-Patch Antenna. 4.6 A Comparison of Analysis Methods. Appendix 4A-Interpretation of the ray theory. 4A.1 Watson Transformation. 4A.2 Fock Substitution. 4A.3 SDP Integration. 4A.4 Surface Waves. 4A.5 Generalization. References. 5 GEODESICS ON CURVED SURFACES. 5.1 Introduction. 5.1.1 Definition of a Surface and Related Parameters. 5.1.2 The Geodesic Equation. 5.1.3 Solving the Geodesic Equation and the Existence of Geodesics. 5.2 Singly Curved Surfaces. 5.3 Doubly Curved Surfaces. 5.3.1 Introduction. 5.3.2 The Cone. 5.3.3 Rotationally Symmetric Doubly Curved Surfaces. 5.3.4 Properties of Geodesics on Doubly Curved Surfaces. 5.3.5 Geodesic Splitting. 5.4 Arbitrarily Shaped Surfaces. 5.4.1 Hybrid surfaces. 5.4.2 Analytically Described Surfaces. References. 6 ANTENNAS ON SINGLY CURVED SURFACES. 6.1 Introduction. 6.2 Aperture Antennas on Circular Cylinders. 6.2.1 Introduction. 6.2.2 Theory. 6.2.3 Mutual Coupling. 6.2.3.1 Isolated Mutual Coupling. 6.2.3.2 Cross Polarization Coupling. 6.2.3.3 Array mutual coupling. 6.2.4 Radiation Characteristics. 6.2.4.1 Isolated-Element Patterns. 6.2.4.2 Embedded-Element Patterns. 6.3 Aperture Antennas on General Convex Cylinders. 6.3.1 Introduction. 6.3.2 Mutual Coupling. 6.3.2.1 The Elliptic Cylinder. 6.3.2.2 The Parabolic Cylinder. 6.3.2.3 The Hyperbolic Cylinder. 6.3.3 Radiation Characteristics. 6.3.3.1 The Elliptic Cylinder. 6.3.3.2 End Effects. 6.4 Aperture Antennas on Faceted Cylinders. 6.4.1 Introduction. 6.4.2 Mutual Coupling. 6.4.3 Radiation Characteristics. 6.5 Aperture Antennas on Dielectric Coated Circular Cylinders. 6.5.1 Introduction. 6.5.2 Mutual Coupling. 6.5.2.1 Isolated Mutual Coupling. 6.5.2.2 Array Mutual Coupling. 6.5.3 Radiation Characteristics. 6.5.3.1 Isolated-Element Patterns. 6.5.3.2 Embedded-Element Patterns. 6.6 Microstrip-Patch Antennas on Coated Circular Cylinders. 6.6.1 Introduction. 6.6.2 Theory. 6.6.3 Mutual Coupling. 6.6.3.1 Single-Element Characteristics. 6.6.3.2 Isolated and Array Mutual Coupling. 6.6.4 Radiation Characteristics. 6.6.4.1 Isolated-Element Patterns. 6.6.4.2 Embedded-Element Patterns. 6.7 The Cone. 6.7.1 Introduction. 6.7.2 Mutual Coupling. 6.7.2.1 Aperture Antennas. 6.7.2.2 Microstrip-Patch Antennas. 6.7.3 Radiation Characteristics. 6.7.3.1 Aperture Antennas 248 6.7.3.2 Microstrip-Patch Antennas. References. 7 ANTENNAS ON DOUBLY CURVED SURFACES. 7.1 Introduction. 7.2 Aperture Antennas. 7.2.1 Introduction. 7.2.2 Mutual Coupling. 7.2.2.1 Isolated Mutual Coupling. 7.2.2.2 Array Mutual Coupling. 7.2.3 Radiation Characteristics. 7.3 Microstrip-Patch Antennas. 7.3.1 Introduction. 7.3.2 Mutual Coupling. 7.3.2.1 Single-Element Characteristics. 7.3.2.2 Isolated Mutual Coupling. 7.3.3 Radiation Characteristics. References. 8 CONFORMAL ARRAY CHARACTERISTICS. 8.1 Introduction. 8.2 Mechanical Considerations. 8.2.1 Array Shapes. 8.2.2 Element Distribution on a Curved Surface. 8.2.3 Multifacet Solutions. 8.2.4 Tile Architecture. 8.2.5 Static and Dynamic Stress. 8.2.6 Other Electromagnetic Considerations. 8.3 Radiation Patterns. 8.3.1 Introduction. 8.3.2 Grating Lobes. 8.3.3 Scan-Invariant Pattern. 8.3.4 Phase-Scanned Pattern. 8.3.5 A Simple Aperture Model for Microstrip Arrays. 8.4 Array Impedance. 8.4.1 Introduction. 8.4.2 Phase-Mode Impedance. 8.5 Polarization. 8.5.1 Polarization Definitions. 8.5.2 Cylindrical Arrays. 8.5.2.1 Dipole Elements. 8.5.2.2 Aperture elements. 8.5.3 Polarization in Doubly Curved Arrays. 8.5.3.1 A Paraboloidal Array. 8.5.4 Polarization Control. 8.6 Characteristics of Selected Conformal Arrays. 8.6.1 Nearly Planar Arrays. 8.6.2 Circular Arrays. 8.6.3 Cylindrical Arrays. 8.6.4 Conical Arrays. 8.6.5 Spherical Arrays. 8.6.6 Paraboloidal Arrays. 8.6.7 Ellipsoidal Arrays. 8.6.8 Other Shapes. References. 9 BEAM FORMING. 9.1 Introduction. 9.2 A Note on Orthogonal Beams. 9.3 Analog Feed Systems. 9.3.1 Vector Transfer Matrix Systems. 9.3.2 Switch Matrix Systems. 9.3.3 Butler Matrix Feed Systems. 9.3.4 RF Lens Feed Systems. 9.3.4.1 The R-2R Lens Feed. 9.3.4.2 The R-kR Lens Feed. 9.3.4.3 Mode-Controlled Lenses. 9.3.4.4 The Luneburg Lens. 9.3.4.5 The Geodesic Lens. 9.3.4.6 The Dome Antenna. 9.4 Digital Beam Forming. 9.5 Adaptive Beam Forming. 9.5.1 Introduction. 9.5.2 The Sample Matrix Inversion Method. 9.5.3 An Adaptive Beam Forming Simulation Using a Circular Array. 9.6 Remarks on Feed Systems. References. 10 CONFORMAL ARRAY PATTERN SYNTHESIS. 10.1 Introduction. 10.2 Shape Optimization. 10.3 Fourier Methods for Circular Ring Arrays. 10.4 Dolph-Chebysjev Pattern Synthesis. 10.4.1 Isotropic Elements. 10.4.2 Directive Elements. 10.5 An Aperture Projection Method. 10.6 The Method of Alternating Projections. 10.7 Adaptive Array Methods. 10.8 Least-Mean-Squares Methods (LMS). 10.9 Polarimetric Pattern Synthesis. 10.10 Other Optimization Methods. 10.11 A Synthesis Example Including Mutual Coupling. 10.12 A Comparison of Synthesis Methods. References. 11 SCATTERING FROM CONFORMAL ARRAYS. 11.1 Introduction. 11.2 Definitions. 11.3 Radar Cross Section Analysis. 11.3.1 General. 11.3.2 Analysis Method for an Array on a Conducting Cylinder. 11.3.3 Analysis Method for an Array on a Conducting Cylinder with a Dielectric Coating. 11.4 Cylindrical Array. 11.4.1 Analysis and Experiment-Rectangular Grid. 11.4.2 Higher-Order Waveguide Modes. 11.4.3 Triangular Grid. 11.4.4 Conclusions from the PEC Conformal Array Analysis. 11.5 Cylindrical Array with Dielectric Coating. 11.5.1 Single Element with Dielectric Coating. 11.5.2 Array with Dielectric Coating. 11.6 Radiation and Scattering Trade-off. 11.6.1 Introduction. 11.6.2 Single-Element Results. 11.6.3 Array Results. 11.7 Discussion. References. Subject Index. About the Authors.

588 citations


"Effect of uniform and Dolph-Chebysh..." refers background in this paper

  • ...CAAs are classified as circular ring antenna arrays in general planar arrays [7,8]....

    [...]

Journal ArticleDOI
TL;DR: In this article, the resonant frequency of a planar, circular disc antenna was obtained in analytical form for a printed-circuit board, where the low profile antenna is separated from the ground plane only by a thin layer of dielectric material.
Abstract: The resonant frequency is obtained in analytical form for a planar, circular disc antenna which is etched on a printed-circuit board so that the low-profile antenna is separated from the ground plane only by a thin layer of dielectric material. The formula is found to have an error of less than 2.5 percent when compared with experimental data.

229 citations

01 Jan 2000
TL;DR: An overview of more than forty years of phased-array radar research activity is provided, which includes theoretical analysis, application studies, hardware design, device fabrication, and system testing.
Abstract: ■ Lincoln Laboratory has been involved in the development of phased-array radar technology since the late 1950s. Radar research activities have included theoretical analysis, application studies, hardware design, device fabrication, and system testing. Early phased-array research was centered on improving the national capability in phased-array radars. The Laboratory has developed several test-bed phased arrays, which have been used to demonstrate and evaluate components, beamforming techniques, calibration, and testing methodologies. The Laboratory has also contributed significantly in the area of phased-array antenna radiating elements, phase-shifter technology, solid-state transmit-andreceive modules, and monolithic microwave integrated circuit (MMIC) technology. A number of developmental phased-array radar systems have resulted from this research, as discussed in other articles in this issue. A wide variety of processing techniques and system components have also been developed. This article provides an overview of more than forty years of this phased-array radar research activity.

200 citations


"Effect of uniform and Dolph-Chebysh..." refers background in this paper

  • ...Introduction Circular antenna arrays (CAAs) have many potential applications in wireless technology such as radar and satellite [1,2]....

    [...]