scispace - formally typeset
Search or ask a question
Book ChapterDOI

Effect of Viscous Dissipation of Laminar Flow over a Flat Plate with Variable Properties

01 Jan 2021-pp 619-626
TL;DR: In this article, the authors focused on forced convection water boundary layer flow on a permeable diverging channel for variable physical properties of fluid, and the formation of coupled nonlinear partial differential equations is expressed in terms of non-dimensional quantity using similarity transformation.
Abstract: The current study focused on forced convection water boundary layer flow on permeable diverging channel for variable physical properties of fluid. The formation of coupled nonlinear partial differential equations is expressed in terms of non-dimensional quantity using similarity transformation. The solution of non-dimensional differential equation obtained by numerical finite difference scheme with combination of quasi-linearization technique. It is found that the Eckert number is significant in the boundary layer region in laminar flow, and also, the effects of physical parameters are investigated numerically and shown graphically.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the problem of steady boundary layer Magneto-hydrodynamic flow of an electrical conducting nanofluid flow through an exponential permeable stretching sheet with viscous dissipation, ohmic dissipation and heat source/sink in occurrence of chemical reaction are mathematically examined.

8 citations

References
More filters
Book
01 Jan 1973
TL;DR: CRC handbook of chemistry and physics, CRC Handbook of Chemistry and Physics, CRC handbook as discussed by the authors, CRC Handbook for Chemistry and Physiology, CRC Handbook for Physics,
Abstract: CRC handbook of chemistry and physics , CRC handbook of chemistry and physics , کتابخانه مرکزی دانشگاه علوم پزشکی تهران

52,268 citations

Book
01 Jan 1955
TL;DR: The flow laws of the actual flows at high Reynolds numbers differ considerably from those of the laminar flows treated in the preceding part, denoted as turbulence as discussed by the authors, and the actual flow is very different from that of the Poiseuille flow.
Abstract: The flow laws of the actual flows at high Reynolds numbers differ considerably from those of the laminar flows treated in the preceding part. These actual flows show a special characteristic, denoted as turbulence. The character of a turbulent flow is most easily understood the case of the pipe flow. Consider the flow through a straight pipe of circular cross section and with a smooth wall. For laminar flow each fluid particle moves with uniform velocity along a rectilinear path. Because of viscosity, the velocity of the particles near the wall is smaller than that of the particles at the center. i% order to maintain the motion, a pressure decrease is required which, for laminar flow, is proportional to the first power of the mean flow velocity. Actually, however, one ob~erves that, for larger Reynolds numbers, the pressure drop increases almost with the square of the velocity and is very much larger then that given by the Hagen Poiseuille law. One may conclude that the actual flow is very different from that of the Poiseuille flow.

17,321 citations

Book
30 Nov 1961
TL;DR: In this article, the authors propose Matrix Methods for Parabolic Partial Differential Equations (PPDE) and estimate of Acceleration Parameters, and derive the solution of Elliptic Difference Equations.
Abstract: Matrix Properties and Concepts.- Nonnegative Matrices.- Basic Iterative Methods and Comparison Theorems.- Successive Overrelaxation Iterative Methods.- Semi-Iterative Methods.- Derivation and Solution of Elliptic Difference Equations.- Alternating-Direction Implicit Iterative Methods.- Matrix Methods for Parabolic Partial Differential Equations.- Estimation of Acceleration Parameters.

5,317 citations

Book
01 Jan 1983
TL;DR: In this paper, the basic principles of metal forming are discussed, as well as significant practical variables of metal-forming processes such as friction, temperatures and forming machines and their characteristics.
Abstract: Briefly reviews the basic principles of metal forming but major emphasis is on the latest developments in the design of metal-forming operations and tooling. Discusses the position of metal forming in manufacturing and considers a metal-forming process as a system consisting of several interacting variables. Includes an overall review and classification of all metal-forming processes. The fundamentals of plastic deformation - metal flow, flow stress of metals and yield criteria - are discussed, as are significant practical variables of metal- forming processes such as friction, temperatures and forming machines and their characteristics. Examines approximate methods of analyzing simple forming operations, then looks at massive forming processes such as closed-die forging, hot extrusion, cold forging/ extrusion, rolling and drawing (discussion includes the prediction of stresses and load in each process and applications of computer-aided techniques). Recent developments in metal-forming technology, including CAD/CAM for die design and manufacture, are discussed, and a review of the latest trends in metal flow analysis and simulations.

532 citations