scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Effect size estimates: Current use, calculations, and interpretation.

01 Feb 2012-Journal of Experimental Psychology: General (American Psychological Association)-Vol. 141, Iss: 1, pp 2-18
TL;DR: A straightforward guide to understanding, selecting, calculating, and interpreting effect sizes for many types of data and to methods for calculating effect size confidence intervals and power analysis is provided.
Abstract: The Publication Manual of the American Psychological Association (American Psychological Association, 2001, American Psychological Association, 2010) calls for the reporting of effect sizes and their confidence intervals. Estimates of effect size are useful for determining the practical or theoretical importance of an effect, the relative contributions of factors, and the power of an analysis. We surveyed articles published in 2009 and 2010 in the Journal of Experimental Psychology: General, noting the statistical analyses reported and the associated reporting of effect size estimates. Effect sizes were reported for fewer than half of the analyses; no article reported a confidence interval for an effect size. The most often reported analysis was analysis of variance, and almost half of these reports were not accompanied by effect sizes. Partial η2 was the most commonly reported effect size estimate for analysis of variance. For t tests, 2/3 of the articles did not report an associated effect size estimate; Cohen's d was the most often reported. We provide a straightforward guide to understanding, selecting, calculating, and interpreting effect sizes for many types of data and to methods for calculating effect size confidence intervals and power analysis.
Citations
More filters
Journal ArticleDOI
05 Jan 2018-Science
TL;DR: Examination of the oral and gut microbiome of melanoma patients undergoing anti-programmed cell death 1 protein (PD-1) immunotherapy suggested enhanced systemic and antitumor immunity in responding patients with a favorable gut microbiome as well as in germ-free mice receiving fecal transplants from responding patients.
Abstract: Preclinical mouse models suggest that the gut microbiome modulates tumor response to checkpoint blockade immunotherapy; however, this has not been well-characterized in human cancer patients. Here we examined the oral and gut microbiome of melanoma patients undergoing anti-programmed cell death 1 protein (PD-1) immunotherapy (n = 112). Significant differences were observed in the diversity and composition of the patient gut microbiome of responders versus nonresponders. Analysis of patient fecal microbiome samples (n = 43, 30 responders, 13 nonresponders) showed significantly higher alpha diversity (P < 0.01) and relative abundance of bacteria of the Ruminococcaceae family (P < 0.01) in responding patients. Metagenomic studies revealed functional differences in gut bacteria in responders, including enrichment of anabolic pathways. Immune profiling suggested enhanced systemic and antitumor immunity in responding patients with a favorable gut microbiome as well as in germ-free mice receiving fecal transplants from responding patients. Together, these data have important implications for the treatment of melanoma patients with immune checkpoint inhibitors.

2,791 citations

Journal ArticleDOI
TL;DR: An eight-step new-statistics strategy for research with integrity is described, which starts with formulation of research questions in estimation terms, has no place for NHST, and is aimed at building a cumulative quantitative discipline.
Abstract: We need to make substantial changes to how we conduct research. First, in response to heightened concern that our published research literature is incomplete and untrustworthy, we need new requirements to ensure research integrity. These include prespecification of studies whenever possible, avoidance of selection and other inappropriate data- analytic practices, complete reporting, and encouragement of replication. Second, in response to renewed recognition of the severe flaws of null-hypothesis significance testing (NHST), we need to shift from reliance on NHST to estimation and other preferred techniques. The new statistics refers to recommended practices, including estimation based on effect sizes, confidence intervals, and meta-analysis. The techniques are not new, but adopting them widely would be new for many researchers, as well as highly beneficial. This article explains why the new statistics are important and offers guidance for their use. It describes an eight-step new-statistics strategy for research with integrity, which starts with formulation of research questions in estimation terms, has no place for NHST, and is aimed at building a cumulative quantitative discipline.

2,339 citations


Cites background from "Effect size estimates: Current use,..."

  • ...Fritz, Morris, and Richler (2012) discussed a range of ES measures, especially in the context of multiway designs, with an emphasis on practical use and interpretation....

    [...]

Journal ArticleDOI
TL;DR: Bayesian estimation for 2 groups provides complete distributions of credible values for the effect size, group means and their difference, standard deviations and their Difference, and the normality of the data.
Abstract: Bayesian estimation for 2 groups provides complete distributions of credible values for the effect size, group means and their difference, standard deviations and their difference, and the normality of the data. The method handles outliers. The decision rule can accept the null value (unlike traditional t tests) when certainty in the estimate is high (unlike Bayesian model comparison using Bayes factors). The method also yields precise estimates of statistical power for various research goals. The software and programs are free and run on Macintosh, Windows, and Linux platforms.

1,214 citations

Journal ArticleDOI
TL;DR: This paper presented a description of L2 effects from 346 primary studies and 91 meta-analyses (N > 604,000) and found that Cohen's benchmarks generally underestimate the effects obtained in L2 research.
Abstract: The calculation and use of effect sizes—such as d for mean differences and r for correlations—has increased dramatically in second language (L2) research in the last decade. Interpretations of these effects, however, have been rare and, when present, have largely defaulted to Cohen's levels of small (d = .2, r = .1), medium (.5, .3), and large (.8, .5), which were never intended as prescriptions but rather as a general guide. As Cohen himself and many others have argued, effect sizes are best understood when interpreted within a particular discipline or domain. This article seeks to promote more informed and field-specific interpretations of d and r by presenting a description of L2 effects from 346 primary studies and 91 meta-analyses (N > 604,000). Results reveal that Cohen's benchmarks generally underestimate the effects obtained in L2 research. Based on our analysis, we propose a field-specific scale for interpreting effect sizes, and we outline eight key considerations for gauging relative magnitude and practical significance in primary and secondary studies, such as theoretical maturity in the domain, the degree of experimental manipulation, and the presence of publication bias.

999 citations

01 Jan 2014
TL;DR: In this article, the main objectives of this contribution are to promote various effect size measures in sport sciences through, once again, bringing to the readers' attention the benefits of reporting them, and to present examples of such estimates with a greater focus on those that can be calculated for non-parametric tests.
Abstract: Recent years have witnessed a growing number of published reports that point out the need for reporting various effect size estimates in the context of null hypothesis testing (H0) as a response to a tendency for reporting tests of statistical significance only, with less attention on other important aspects of statistical analysis. In the face of considerable changes over the past several years, neglect to report effect size estimates may be noted in such fields as medical science, psychology, applied linguistics, or pedagogy. Nor have sport sciences managed to totally escape the grips of this suboptimal practice: here statistical analyses in even some of the current research reports do not go much further than computing p-values. The p-value, however, is not meant to provide information on the actual strength of the relationship between variables, and does not allow the researcher to determine the effect of one variable on another. Effect size measures serve this purpose well. While the number of reports containing statistical estimates of effect sizes calculated after applying parametric tests is steadily increasing, reporting effect sizes with non-parametric tests is still very rare. Hence, the main objectives of this contribution are to promote various effect size measures in sport sciences through, once again, bringing to the readers’ attention the benefits of reporting them, and to present examples of such estimates with a greater focus on those that can be calculated for non-parametric tests

732 citations


Cites background or methods from "Effect size estimates: Current use,..."

  • ...A way out of this problem is to calculate the partial eta-squared statistic ( ), ηp 2 where a given factor is seen as playing a role in explaining the portion of variance in the dependent variable provided that other effects (factors) present in the analysis have been excluded [6]....

    [...]

  • ...The formula used in computing the point-biserial correlation coefficient is presented below [1, 6, 19]:...

    [...]

  • ...As reporting effect size estimates is beneficial in more than one way, below we list the benefits that seem most fundamental [6, 12, 14, 15, 16, 17, 18]: 1....

    [...]

  • ...Below we present the formulae for such calculations [1, 6]:...

    [...]

  • ...For another non-parametric test, the Wilcoxon signedrank test for paired samples, again, the Z-score may be used to calculate correlation coefficients employing the formula given below (where n is the total number of observations on which Z is based) [6]....

    [...]

References
More filters
Book
01 Dec 1969
TL;DR: The concepts of power analysis are discussed in this paper, where Chi-square Tests for Goodness of Fit and Contingency Tables, t-Test for Means, and Sign Test are used.
Abstract: Contents: Prefaces. The Concepts of Power Analysis. The t-Test for Means. The Significance of a Product Moment rs (subscript s). Differences Between Correlation Coefficients. The Test That a Proportion is .50 and the Sign Test. Differences Between Proportions. Chi-Square Tests for Goodness of Fit and Contingency Tables. The Analysis of Variance and Covariance. Multiple Regression and Correlation Analysis. Set Correlation and Multivariate Methods. Some Issues in Power Analysis. Computational Procedures.

115,069 citations


"Effect size estimates: Current use,..." refers background or methods in this paper

  • ...Data are from Grissom (1994) and Cohen (1988); they assume similar sample sizes. p 2 SSeffect SSeffect SSerror ....

    [...]

  • ...The z value can be used to calculate an effect size, such as the r proposed by Cohen (1988); Cohen’s guidelines for r are that a large effect is .5, a medium effect is .3, and a small effect is .1 (Coolican, 2009, p. 395)....

    [...]

  • ...…for the multiple comparisons by the square root of the MSE (Grissom & Kim, 2005): sAB MSE In an attempt to help with the interpretation of d, Cohen (1988) suggested that d values of .8, .5, and .2 represented large, medium, and small effect sizes, respectively, perhaps more meaningfully…...

    [...]

  • ...…guide appears in the Appendix along with mention of planning sample sizes based on accuracy in 1 It is rarely the case that experimental studies have the problem of too many cases making trivial effects statistically significant, but some largescale surveys and other studies with very large…...

    [...]

  • ...Cohen (1988), Keppel and Wickens (2004), and most statistical textbooks provide guidance on calculating power; a very brief, elementary guide appears in the Appendix along with mention of planning sample sizes based on accuracy in 1 It is rarely the case that experimental studies have the problem…...

    [...]

Book
01 Jan 1983
TL;DR: In this Section: 1. Multivariate Statistics: Why? and 2. A Guide to Statistical Techniques: Using the Book Research Questions and Associated Techniques.
Abstract: In this Section: 1. Brief Table of Contents 2. Full Table of Contents 1. BRIEF TABLE OF CONTENTS Chapter 1 Introduction Chapter 2 A Guide to Statistical Techniques: Using the Book Chapter 3 Review of Univariate and Bivariate Statistics Chapter 4 Cleaning Up Your Act: Screening Data Prior to Analysis Chapter 5 Multiple Regression Chapter 6 Analysis of Covariance Chapter 7 Multivariate Analysis of Variance and Covariance Chapter 8 Profile Analysis: The Multivariate Approach to Repeated Measures Chapter 9 Discriminant Analysis Chapter 10 Logistic Regression Chapter 11 Survival/Failure Analysis Chapter 12 Canonical Correlation Chapter 13 Principal Components and Factor Analysis Chapter 14 Structural Equation Modeling Chapter 15 Multilevel Linear Modeling Chapter 16 Multiway Frequency Analysis 2. FULL TABLE OF CONTENTS Chapter 1: Introduction Multivariate Statistics: Why? Some Useful Definitions Linear Combinations of Variables Number and Nature of Variables to Include Statistical Power Data Appropriate for Multivariate Statistics Organization of the Book Chapter 2: A Guide to Statistical Techniques: Using the Book Research Questions and Associated Techniques Some Further Comparisons A Decision Tree Technique Chapters Preliminary Check of the Data Chapter 3: Review of Univariate and Bivariate Statistics Hypothesis Testing Analysis of Variance Parameter Estimation Effect Size Bivariate Statistics: Correlation and Regression. Chi-Square Analysis Chapter 4: Cleaning Up Your Act: Screening Data Prior to Analysis Important Issues in Data Screening Complete Examples of Data Screening Chapter 5: Multiple Regression General Purpose and Description Kinds of Research Questions Limitations to Regression Analyses Fundamental Equations for Multiple Regression Major Types of Multiple Regression Some Important Issues. Complete Examples of Regression Analysis Comparison of Programs Chapter 6: Analysis of Covariance General Purpose and Description Kinds of Research Questions Limitations to Analysis of Covariance Fundamental Equations for Analysis of Covariance Some Important Issues Complete Example of Analysis of Covariance Comparison of Programs Chapter 7: Multivariate Analysis of Variance and Covariance General Purpose and Description Kinds of Research Questions Limitations to Multivariate Analysis of Variance and Covariance Fundamental Equations for Multivariate Analysis of Variance and Covariance Some Important Issues Complete Examples of Multivariate Analysis of Variance and Covariance Comparison of Programs Chapter 8: Profile Analysis: The Multivariate Approach to Repeated Measures General Purpose and Description Kinds of Research Questions Limitations to Profile Analysis Fundamental Equations for Profile Analysis Some Important Issues Complete Examples of Profile Analysis Comparison of Programs Chapter 9: Discriminant Analysis General Purpose and Description Kinds of Research Questions Limitations to Discriminant Analysis Fundamental Equations for Discriminant Analysis Types of Discriminant Analysis Some Important Issues Comparison of Programs Chapter 10: Logistic Regression General Purpose and Description Kinds of Research Questions Limitations to Logistic Regression Analysis Fundamental Equations for Logistic Regression Types of Logistic Regression Some Important Issues Complete Examples of Logistic Regression Comparison of Programs Chapter 11: Survival/Failure Analysis General Purpose and Description Kinds of Research Questions Limitations to Survival Analysis Fundamental Equations for Survival Analysis Types of Survival Analysis Some Important Issues Complete Example of Survival Analysis Comparison of Programs Chapter 12: Canonical Correlation General Purpose and Description Kinds of Research Questions Limitations Fundamental Equations for Canonical Correlation Some Important Issues Complete Example of Canonical Correlation Comparison of Programs Chapter 13: Principal Components and Factor Analysis General Purpose and Description Kinds of Research Questions Limitations Fundamental Equations for Factor Analysis Major Types of Factor Analysis Some Important Issues Complete Example of FA Comparison of Programs Chapter 14: Structural Equation Modeling General Purpose and Description Kinds of Research Questions Limitations to Structural Equation Modeling Fundamental Equations for Structural Equations Modeling Some Important Issues Complete Examples of Structural Equation Modeling Analysis. Comparison of Programs Chapter 15: Multilevel Linear Modeling General Purpose and Description Kinds of Research Questions Limitations to Multilevel Linear Modeling Fundamental Equations Types of MLM Some Important Issues Complete Example of MLM Comparison of Programs Chapter 16: Multiway Frequency Analysis General Purpose and Description Kinds of Research Questions Limitations to Multiway Frequency Analysis Fundamental Equations for Multiway Frequency Analysis Some Important Issues Complete Example of Multiway Frequency Analysis Comparison of Programs

53,113 citations

Book
01 Jan 1956
TL;DR: This is the revision of the classic text in the field, adding two new chapters and thoroughly updating all others as discussed by the authors, and the original structure is retained, and the book continues to serve as a combined text/reference.
Abstract: This is the revision of the classic text in the field, adding two new chapters and thoroughly updating all others. The original structure is retained, and the book continues to serve as a combined text/reference.

35,552 citations

Book
01 Jan 1975
TL;DR: In this article, the Mathematical Basis for Multiple Regression/Correlation and Identification of the Inverse Matrix Elements is presented. But it does not address the problem of missing data.
Abstract: Contents: Preface. Introduction. Bivariate Correlation and Regression. Multiple Regression/Correlation With Two or More Independent Variables. Data Visualization, Exploration, and Assumption Checking: Diagnosing and Solving Regression Problems I. Data-Analytic Strategies Using Multiple Regression/Correlation. Quantitative Scales, Curvilinear Relationships, and Transformations. Interactions Among Continuous Variables. Categorical or Nominal Independent Variables. Interactions With Categorical Variables. Outliers and Multicollinearity: Diagnosing and Solving Regression Problems II. Missing Data. Multiple Regression/Correlation and Causal Models. Alternative Regression Models: Logistic, Poisson Regression, and the Generalized Linear Model. Random Coefficient Regression and Multilevel Models. Longitudinal Regression Methods. Multiple Dependent Variables: Set Correlation. Appendices: The Mathematical Basis for Multiple Regression/Correlation and Identification of the Inverse Matrix Elements. Determination of the Inverse Matrix and Applications Thereof.

29,764 citations