scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Effective enhancement of a carbon nanothread on the mechanical properties of the polyethylene nanocomposite

18 Mar 2021-Journal of Physical Chemistry C (American Chemical Society)-Vol. 125, Iss: 10, pp 5781-5792
TL;DR: In this article, the role of the nanofillers via molecular dynamics simulations under different deformation scenarios, mimicking a maximum and minimum load transfer scenario from the polymer matrix.
Abstract: The mechanical performance of nanomaterial-reinforced polymer nanocomposites is a prerequisite for their engineering implementations, which is largely determined by the interfacial load transfer efficiency. This work investigates the role of the nanofillers via molecular dynamics simulations under different deformation scenarios, mimicking a maximum and minimum load transfer scenario from the polymer matrix. On the basis of the polyethylene (PE) nanocomposite reinforced by a new nanofiller-carbon nanothread (NTH), we find that the loading conditions dominantly determine its enhancement effect on the mechanical properties of the PE nanocomposite. Under tensile deformation, the ultimate tensile strength of the PE nanocomposite receives around 61 to 211% increment when the filler deforms simultaneously with the PE matrix. However, such enhancement is largely suppressed when the NTH is deforming nonsimultaneously. Similar results are observed from the compressive deformation. Specifically, both morphology and functionalization are found to alter the enhancement effect from the NTH fillers, while also relying on the loading directions. Overall, this work provides an in-depth understanding of the role of the nanofiller. The observations signify the importance of establishing effective load transfer at the interface, which could benefit the design and fabrication of high-performance polymer nanocomposites.
Citations
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal Article
TL;DR: Pull-out tests reveal that the diamond nanothread bundle has an interface transfer load of more than twice that of the carbon nanotube bundle, corresponding to an order of magnitude higher in terms of the interfacial shear strength.
Abstract: Carbon fibres have attracted interest from both the scientific and engineering communities due to their outstanding physical properties Here we report that recently synthesized ultrathin diamond nanothread not only possesses excellent torsional deformation capability, but also excellent interfacial load-transfer efficiency Compared with (10,10) carbon nanotube bundles, the flattening of nanotubes is not observed in diamond nanothread bundles, which leads to a high-torsional elastic limit that is almost three times higher Pull-out tests reveal that the diamond nanothread bundle has an interface transfer load of more than twice that of the carbon nanotube bundle, corresponding to an order of magnitude higher in terms of the interfacial shear strength Such high load-transfer efficiency is attributed to the strong mechanical interlocking effect at the interface These intriguing features suggest that diamond nanothread could be an excellent candidate for constructing next-generation carbon fibres

47 citations

Journal ArticleDOI
TL;DR: Using large-scale molecular dynamics simulations, it is found that this sp(3) bonded DNT can transition from brittle to ductile behaviour by varying the length of the poly-benzene sections, suggesting that DNT possesses entirely different mechanical responses than other 1D carbon allotropes.
Abstract: As a potential building block for the next generation of devices or multifunctional materials that are spreading almost every technology sector, one-dimensional (1D) carbon nanomaterial has received intensive research interests. Recently, a new ultra-thin diamond nanothread (DNT) has joined this palette, which is a 1D structure with poly-benzene sections connected by Stone-Wales (SW) transformation defects. Using large-scale molecular dynamics simulations, we found that this sp3 bonded DNT can transit from a brittle to a ductile characteristic by varying the length of the poly-benzene sections, suggesting that DNT possesses entirely different mechanical responses than other 1D carbon allotropies. Analogously, the SW defects behave like a grain boundary that interrupts the consistency of the poly-benzene sections. For a DNT with a fixed length, the yield strength fluctuates in the vicinity of a certain value and is independent of the "grain size". On the other hand, both yield strength and yield strain show a clear dependence on the total length of DNT, which is due to the fact that the failure of the DNT is dominated by the SW defects. Its highly tunable ductility together with its ultra-light density and high Young's modulus makes diamond nanothread ideal for creation of extremely strong three-dimensional nano-architectures.

16 citations

Journal ArticleDOI
TL;DR: In this paper , a bottom-up multiscale method is adopted to study the effect of the CNT volume fractions on the nonlinear vibration of the poly (methyl methacrylate) (PMMA)/CNT composite.
Abstract: The volume fraction of the carbon nanotube (CNT) plays a key role in ensuring the performance of the CNT reinforced polymer composite, especially under the severe vibration, which leads to the resonance and failure of the composite structure. In this paper, a bottom-up multiscale method is adopted to study the effect of the CNT volume fractions on the nonlinear vibration of the poly (methyl methacrylate) (PMMA)/CNT composite. According to the molecular simulation, the longitudinal, transverse and shear moduli of the PMMA/CNT nanocomposites are found to increase with the increasing CNT volume fractions. Substituting the simulated moduli into the extended rule of mixtures (EROM), the efficiency parameters of the PMMA/CNT composite with various CNT volume fractions are derived based on a homogenization approach. The derived efficiency parameters are used in the functionally graded (FG)-based EROM to obtain the expressions of the longitudinal, transverse and shear moduli of the macroscopic composite plate, so as to obtain the constitutive equation for the nonlinear vibrations of the FG-based PMMA/CNT composite plate. The subsequent meshless simulation results demonstrate that the natural frequencies of the FG-based composite plate increase with the increasing volume fractions, whereas the ratios of the nonlinear to linear frequencies decrease. Using the bottom-up multiscale analysis, the macroscopic vibration responses are analyzed for the PMMA/CNT composites with the CNT volume fractions up to 9.0%, which provides a paradigm of the design of the PMMA/CNT composite by considering the CNT volume fraction effect.

11 citations

Journal ArticleDOI
TL;DR: In this article, a bottom-up multiscale method is adopted to study the effect of the CNT volume fractions on the nonlinear vibration of the poly (methyl methacrylate) (PMMA)/CNT composite.
Abstract: The volume fraction of the carbon nanotube (CNT) plays a key role in ensuring the performance of the CNT reinforced polymer composite, especially under the severe vibration, which leads to the resonance and failure of the composite structure. In this paper, a bottom-up multiscale method is adopted to study the effect of the CNT volume fractions on the nonlinear vibration of the poly (methyl methacrylate) (PMMA)/CNT composite. According to the molecular simulation, the longitudinal, transverse and shear moduli of the PMMA/CNT nanocomposites are found to increase with the increasing CNT volume fractions. Substituting the simulated moduli into the extended rule of mixtures (EROM), the efficiency parameters of the PMMA/CNT composite with various CNT volume fractions are derived based on a homogenization approach. The derived efficiency parameters are used in the functionally graded (FG)-based EROM to obtain the expressions of the longitudinal, transverse and shear moduli of the macroscopic composite plate, so as to obtain the constitutive equation for the nonlinear vibrations of the FG-based PMMA/CNT composite plate. The subsequent meshless simulation results demonstrate that the natural frequencies of the FG-based composite plate increase with the increasing volume fractions, whereas the ratios of the nonlinear to linear frequencies decrease. Using the bottom-up multiscale analysis, the macroscopic vibration responses are analyzed for the PMMA/CNT composites with the CNT volume fractions up to 9.0%, which provides a paradigm of the design of the PMMA/CNT composite by considering the CNT volume fraction effect.

11 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, three parallel algorithms for classical molecular dynamics are presented, which can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors.

32,670 citations

01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: The dynamical steady-state probability density is found in an extended phase space with variables x, p/sub x/, V, epsilon-dot, and zeta, where the x are reduced distances and the two variables epsilus-dot andZeta act as thermodynamic friction coefficients.
Abstract: Nos\'e has modified Newtonian dynamics so as to reproduce both the canonical and the isothermal-isobaric probability densities in the phase space of an N-body system. He did this by scaling time (with s) and distance (with ${V}^{1/D}$ in D dimensions) through Lagrangian equations of motion. The dynamical equations describe the evolution of these two scaling variables and their two conjugate momenta ${p}_{s}$ and ${p}_{v}$. Here we develop a slightly different set of equations, free of time scaling. We find the dynamical steady-state probability density in an extended phase space with variables x, ${p}_{x}$, V, \ensuremath{\epsilon}\ifmmode \dot{}\else \.{}\fi{}, and \ensuremath{\zeta}, where the x are reduced distances and the two variables \ensuremath{\epsilon}\ifmmode \dot{}\else \.{}\fi{} and \ensuremath{\zeta} act as thermodynamic friction coefficients. We find that these friction coefficients have Gaussian distributions. From the distributions the extent of small-system non-Newtonian behavior can be estimated. We illustrate the dynamical equations by considering their application to the simplest possible case, a one-dimensional classical harmonic oscillator.

17,939 citations

Journal ArticleDOI
TL;DR: In this article, the authors compared the canonical distribution in both momentum and coordinate space with three recently proposed constant temperature molecular dynamics methods by: (i) Nose (Mol. Phys., to be published); (ii) Hoover et al. [Phys. Rev. Lett. 77, 63 (1983); and (iii) Haile and Gupta [J. Chem. Phys. 79, 3067 (1983).
Abstract: Three recently proposed constant temperature molecular dynamics methods by: (i) Nose (Mol. Phys., to be published); (ii) Hoover et al. [Phys. Rev. Lett. 48, 1818 (1982)], and Evans and Morriss [Chem. Phys. 77, 63 (1983)]; and (iii) Haile and Gupta [J. Chem. Phys. 79, 3067 (1983)] are examined analytically via calculating the equilibrium distribution functions and comparing them with that of the canonical ensemble. Except for effects due to momentum and angular momentum conservation, method (1) yields the rigorous canonical distribution in both momentum and coordinate space. Method (2) can be made rigorous in coordinate space, and can be derived from method (1) by imposing a specific constraint. Method (3) is not rigorous and gives a deviation of order N−1/2 from the canonical distribution (N the number of particles). The results for the constant temperature–constant pressure ensemble are similar to the canonical ensemble case.

13,921 citations

Journal ArticleDOI
28 Jan 2000-Science
TL;DR: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a "nanostressing stage" located within a scanning electron microscope and a variety of structures were revealed, such as a nanotube ribbon, a wave pattern, and partial radial collapse.
Abstract: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a “nanostressing stage” located within a scanning electron microscope. The tensile-loading experiment was prepared and observed entirely within the microscope and was recorded on video. The MWCNTs broke in the outermost layer (“sword-in-sheath” failure), and the tensile strength of this layer ranged from 11 to 63 gigapascals for the set of 19 MWCNTs that were loaded. Analysis of the stress-strain curves for individual MWCNTs indicated that the Young's modulus E of the outermost layer varied from 270 to 950 gigapascals. Transmission electron microscopic examination of the broken nanotube fragments revealed a variety of structures, such as a nanotube ribbon, a wave pattern, and partial radial collapse.

5,011 citations