scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing.

TL;DR: Topical application of water soluble cerium oxide nanoparticles (Nanoceria) accelerates the healing of full-thickness dermal wounds in mice by a mechanism that involves enhancement of the proliferation and migration of fibroblasts, keratinocytes and VECs.
About: This article is published in Biomaterials.The article was published on 2013-03-01 and is currently open access. It has received 291 citations till now. The article focuses on the topics: Wound healing.
Citations
More filters
Journal ArticleDOI
TL;DR: This review discusses various nanomaterials that have been explored to mimic different kinds of enzymes and covers their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal.
Abstract: Over the past few decades, researchers have established artificial enzymes as highly stable and low-cost alternatives to natural enzymes in a wide range of applications. A variety of materials including cyclodextrins, metal complexes, porphyrins, polymers, dendrimers and biomolecules have been extensively explored to mimic the structures and functions of naturally occurring enzymes. Recently, some nanomaterials have been found to exhibit unexpected enzyme-like activities, and great advances have been made in this area due to the tremendous progress in nano-research and the unique characteristics of nanomaterials. To highlight the progress in the field of nanomaterial-based artificial enzymes (nanozymes), this review discusses various nanomaterials that have been explored to mimic different kinds of enzymes. We cover their kinetics, mechanisms and applications in numerous fields, from biosensing and immunoassays, to stem cell growth and pollutant removal. We also summarize several approaches to tune the activities of nanozymes. Finally, we make comparisons between nanozymes and other catalytic materials (other artificial enzymes, natural enzymes, organic catalysts and nanomaterial-based catalysts) and address the current challenges and future directions (302 references).

2,951 citations

Journal ArticleDOI
TL;DR: Recent findings on the contributions of various features of Mfps on interfacial binding, which include coacervate formation, surface drying properties, control of the oxidation state of catechol, among other features are reviewed.
Abstract: Marine mussels secret protein-based adhesives, which enable them to anchor to various surfaces in a saline, intertidal zone. Mussel foot proteins (Mfps) contain a large abundance of a unique, catecholic amino acid, Dopa, in their protein sequences. Catechol offers robust and durable adhesion to various substrate surfaces and contributes to the curing of the adhesive plaques. In this article, we review the unique features and the key functionalities of Mfps, catechol chemistry, and strategies for preparing catechol-functionalized polymers. Specifically, we reviewed recent findings on the contributions of various features of Mfps on interfacial binding, which include coacervate formation, surface drying properties, control of the oxidation state of catechol, among other features. We also summarized recent developments in designing advanced biomimetic materials including coacervate-forming adhesives, mechanically improved nano- and micro-composite adhesive hydrogels, as well as smart and self-healing materials. Finally, we review the applications of catechol-functionalized materials for the use as biomedical adhesives, therapeutic applications, and antifouling coatings. © 2016 The Authors. Journal of Polymer Science Part A: Polymer Chemistry Published by Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 9-33.

456 citations

Journal ArticleDOI
10 Feb 2016-ACS Nano
TL;DR: The design and synthesis of triphenylphosphonium-conjugated ceria nanoparticles that localize to mitochondria and suppress neuronal death in a 5XFAD transgenic Alzheimer's disease mouse model are reported.
Abstract: Mitochondrial oxidative stress is a key pathologic factor in neurodegenerative diseases, including Alzheimer's disease. Abnormal generation of reactive oxygen species (ROS), resulting from mitochondrial dysfunction, can lead to neuronal cell death. Ceria (CeO2) nanoparticles are known to function as strong and recyclable ROS scavengers by shuttling between Ce(3+) and Ce(4+) oxidation states. Consequently, targeting ceria nanoparticles selectively to mitochondria might be a promising therapeutic approach for neurodegenerative diseases. Here, we report the design and synthesis of triphenylphosphonium-conjugated ceria nanoparticles that localize to mitochondria and suppress neuronal death in a 5XFAD transgenic Alzheimer's disease mouse model. The triphenylphosphonium-conjugated ceria nanoparticles mitigate reactive gliosis and morphological mitochondria damage observed in these mice. Altogether, our data indicate that the triphenylphosphonium-conjugated ceria nanoparticles are a potential therapeutic candidate for mitochondrial oxidative stress in Alzheimer's disease.

414 citations

Journal ArticleDOI
TL;DR: CNPs are found to be effective against pathologies associated with chronic oxidative stress and inflammation and well tolerated in both in vitro and in vivo biological models, which makes CNPs well suited for applications in nanobiology and regenerative medicine.

406 citations

References
More filters
Journal ArticleDOI
TL;DR: A review of the specific roles of these growth factors and cytokines during wound healing can be found in this article, where patients are treated by three growth factors: PDGF-BB, bFGF, and GM-CSF.
Abstract: Wound healing is an evolutionarily conserved, complex, multicellular process that, in skin, aims at barrier restoration. This process involves the coordinated efforts of several cell types including keratinocytes, fibroblasts, endothelial cells, macrophages, and platelets. The migration, infiltration, proliferation, and differentiation of these cells will culminate in an inflammatory response, the formation of new tissue and ultimately wound closure. This complex process is executed and regulated by an equally complex signaling network involving numerous growth factors, cytokines and chemokines. Of particular importance is the epidermal growth factor (EGF) family, transforming growth factor beta (TGF-beta) family, fibroblast growth factor (FGF) family, vascular endothelial growth factor (VEGF), granulocyte macrophage colony stimulating factor (GM-CSF), platelet-derived growth factor (PDGF), connective tissue growth factor (CTGF), interleukin (IL) family, and tumor necrosis factor-alpha family. Currently, patients are treated by three growth factors: PDGF-BB, bFGF, and GM-CSF. Only PDGF-BB has successfully completed randomized clinical trials in the Unites States. With gene therapy now in clinical trial and the discovery of biodegradable polymers, fibrin mesh, and human collagen serving as potential delivery systems other growth factors may soon be available to patients. This review will focus on the specific roles of these growth factors and cytokines during the wound healing process.

2,617 citations

Journal ArticleDOI
TL;DR: The transfected human dermal microvascular endothelial cells (HMEC) with a PBR-322-based plasmid containing the coding region for the simian virus 40 A gene product, large T antigen, and succeeded in immortalizing them, making HMEC-1 the first immortalized human microv vascular endothelial cell line that retains the morphologic, phenotypic, and functional characteristics of normal human microfiltration cells.

1,285 citations


"Effects of cerium oxide nanoparticl..." refers background in this paper

  • ...morphologic, phenotypic, and functional features of normal human microvascular endothelial cells [20]....

    [...]

Journal ArticleDOI
TL;DR: It has recently been demonstrated that NS has useful anti-inflammatory effects and improves wound healing, which could be exploited in developing better dressings for wounds and burns.

1,247 citations


"Effects of cerium oxide nanoparticl..." refers background in this paper

  • ...Silver nanoparticles exhibit antibacterial activity and can improve the healing of wounds [31]....

    [...]

Journal ArticleDOI
TL;DR: New views on how regulation of the migration of inflammatory cells to sites of tissue damage might guide therapeutic strategies for modulating the inflammatory response are discussed.

1,228 citations


"Effects of cerium oxide nanoparticl..." refers background in this paper

  • ...The rapid infiltration of leukocytes into the wound area plays an important role in preventing infection and clearing debris, thereby enabling migration of keratinocytes and fibroblasts, and vascularization of the new skin tissue [24]....

    [...]

Journal ArticleDOI
TL;DR: In this report ceria nanoparticles are shown to act as catalysts that mimic superoxide dismutase (SOD) with the catalytic rate constant exceeding that determined for the enzyme SOD.

1,040 citations


"Effects of cerium oxide nanoparticl..." refers background in this paper

  • ...The antioxidant capacity of cerium oxide nanoperticles (Nanoceria) has been explored recently; nanoceria were reported to scavenge superoxide radical [8,9], hydrogen peroxide [10], hydroxyl radical [11] and nitric oxide radical [12]....

    [...]

  • ...Cerium oxide nanoparticles (Nanoceria) can scavenge superoxide with a catalytic rate greater than cellular superoxide dismutase [9]....

    [...]