scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Effects of digital fringe projection operational parameters on detecting powder bed defects in additive manufacturing

TL;DR: In this paper, the authors presented data taken from a developing in-process monitoring system designed to measure and detect powder bed defects (PBDs) in powder bed fusion MAM systems using surface height maps created with structured light illumination.
Abstract: Additive manufacturing is a technology transforming traditional production timelines. Specifically, metal additive manufacturing (MAM) has been increasingly adopted by a variety of industries, not only to prototype, but also to fulfill full production scale applications with much lower lead times. Like any maturing manufacturing technology, developments in verifying and validating processes are necessary to support continuous growth. Due to the complex nature of MAM, part quality and repeatability remain integral challenges that inhibit further adoption of MAM for critical component production. In this study, we present data taken from a developing in-process monitoring system designed to measure and detect powder bed defects (PBDs) in powder bed fusion MAM systems using surface height maps created with structured light illumination. We showcase the feasibility of the monitoring technique for in-process implementation by detecting streak PBDs with varying severities (height, width) created in a lab environment. We present results of powder bed measurements for varying experimental parameters of the structured light system such as illumination angle, illumination pattern, and number of illuminations. We also present an expression used to determine experimental height noise based on input parameters for PBD detection based on the instrument transfer function of the structured light monitoring system for arbitrary pixel intensity noise contributions. With the results of PBD detection across across multiple experimental measurement parameters, we provide a best practices approach to in-process implementation of the monitoring system in powder bed fusion manufacturing.
Citations
More filters
Book ChapterDOI
16 Jun 2022
TL;DR: In this article , a low-cost structured light system (using camera and projector) that exploits digital fringe projection to achieve surface profiling of additive manufacturing (AM) parts is presented, and a probability density function of the surface profile is derived, helping the measurement process to provide the probabilistic support required for AM part quality control decisions.
Abstract: Additive manufacturing (AM) processes are rapidly maturing and being adopted in numerous industrial sectors. One of the big challenges with many AM processes is the need for part quality control, either in post-manufactured assessment or in-situ during the build. This paper presents a low-cost structured light system (using camera and projector) that exploits digital fringe projection to achieve surface profiling of AM parts. Additionally, a probability density function of the surface profile is derived, helping the measurement process to provide the probabilistic support required for AM part quality control decisions. Results from a prototype system on AM parts are demonstrated.
References
More filters
Journal ArticleDOI
TL;DR: The state-of-the-art of additive manufacturing (AM) can be classified into three categories: direct digital manufacturing, free-form fabrication, or 3D printing as discussed by the authors.
Abstract: This paper reviews the state-of-the-art of an important, rapidly emerging, manufacturing technology that is alternatively called additive manufacturing (AM), direct digital manufacturing, free form fabrication, or 3D printing, etc. A broad contextual overview of metallic AM is provided. AM has the potential to revolutionize the global parts manufacturing and logistics landscape. It enables distributed manufacturing and the productions of parts-on-demand while offering the potential to reduce cost, energy consumption, and carbon footprint. This paper explores the material science, processes, and business consideration associated with achieving these performance gains. It is concluded that a paradigm shift is required in order to fully exploit AM potential.

4,055 citations

01 Jan 2000

3,275 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the literature and the commercial tools for insitu monitoring of powder bed fusion (PBF) processes is presented, focusing on the development of automated defect detection rules and the study of process control strategies.
Abstract: Despite continuous technological enhancements of metal Additive Manufacturing (AM) systems, the lack of process repeatability and stability still represents a barrier for the industrial breakthrough. The most relevant metal AM applications currently involve industrial sectors (e.g., aerospace and bio-medical) where defects avoidance is fundamental. Because of this, there is the need to develop novel in-situ monitoring tools able to keep under control the stability of the process on a layer-by-layer basis, and to detect the onset of defects as soon as possible. On the one hand, AM systems must be equipped with in-situ sensing devices able to measure relevant quantities during the process, a.k.a. process signatures. On the other hand, in-process data analytics and statistical monitoring techniques are required to detect and localize the defects in an automated way. This paper reviews the literature and the commercial tools for insitu monitoring of Powder Bed Fusion (PBF) processes. It explores the different categories of defects and their main causes, the most relevant process signatures and the in-situ sensing approaches proposed so far. Particular attention is devoted to the development of automated defect detection rules and the study of process control strategies, which represent two critical fields for the development of future smart PBF systems.

505 citations

Journal ArticleDOI
27 Jan 2016-JOM
TL;DR: In this article, the authors highlight some of the key aspects regarding materials qualification needs across the additive manufacturing (AM) spectrum, including various process-, microstructure-, and fracture-modeling activities in addition to integrating these with lifing activities targeting specific components.
Abstract: This overview highlights some of the key aspects regarding materials qualification needs across the additive manufacturing (AM) spectrum. AM technology has experienced considerable publicity and growth in the past few years with many successful insertions for non-mission-critical applications. However, to meet the full potential that AM has to offer, especially for flight-critical components (e.g., rotating parts, fracture-critical parts, etc.), qualification and certification efforts are necessary. While development of qualification standards will address some of these needs, this overview outlines some of the other key areas that will need to be considered in the qualification path, including various process-, microstructure-, and fracture-modeling activities in addition to integrating these with lifing activities targeting specific components. Ongoing work in the Advanced Manufacturing and Mechanical Reliability Center at Case Western Reserve University is focusing on fracture and fatigue testing to rapidly assess critical mechanical properties of some titanium alloys before and after post-processing, in addition to conducting nondestructive testing/evaluation using micro-computerized tomography at General Electric. Process mapping studies are being conducted at Carnegie Mellon University while large area microstructure characterization and informatics (EBSD and BSE) analyses are being conducted at Materials Resources LLC to enable future integration of these efforts via an Integrated Computational Materials Engineering approach to AM. Possible future pathways for materials qualification are provided.

435 citations

Proceedings ArticleDOI
03 Mar 2018
TL;DR: SIFT and BRISK are found to be the most accurate algorithms while ORB and BRK are most efficient and a benchmark for researchers, regardless of any particular area is set.
Abstract: Image registration is the process of matching, aligning and overlaying two or more images of a scene, which are captured from different viewpoints. It is extensively used in numerous vision based applications. Image registration has five main stages: Feature Detection and Description; Feature Matching; Outlier Rejection; Derivation of Transformation Function; and Image Reconstruction. Timing and accuracy of feature-based Image Registration mainly depend on computational efficiency and robustness of the selected feature-detector-descriptor, respectively. Therefore, choice of feature-detector-descriptor is a critical decision in feature-matching applications. This article presents a comprehensive comparison of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK algorithms. It also elucidates a critical dilemma: Which algorithm is more invariant to scale, rotation and viewpoint changes? To investigate this problem, image matching has been performed with these features to match the scaled versions (5% to 500%), rotated versions (0° to 360°), and perspective-transformed versions of standard images with the original ones. Experiments have been conducted on diverse images taken from benchmark datasets: University of OXFORD, MATLAB, VLFeat, and OpenCV. Nearest-Neighbor-Distance-Ratio has been used as the feature-matching strategy while RANSAC has been applied for rejecting outliers and fitting the transformation models. Results are presented in terms of quantitative comparison, feature-detection-description time, feature-matching time, time of outlier-rejection and model fitting, repeatability, and error in recovered results as compared to the ground-truths. SIFT and BRISK are found to be the most accurate algorithms while ORB and BRISK are most efficient. The article comprises rich information that will be very useful for making important decisions in vision based applications and main aim of this work is to set a benchmark for researchers, regardless of any particular area.

339 citations