scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Effects of interleukin-1beta polymorphisms on brain function and behavior in healthy and psychiatric disease conditions

03 Jun 2017-Cytokine & Growth Factor Reviews (Elsevier)-Vol. 37, pp 89-97
TL;DR: Previous studies on the genetic effects of IL1B, which relate it to psychiatric diseases such as major depressive disorder, bipolar disorder, schizophrenia, and Alzheimer's disease, as well as cognitive function in normal individuals are described.
About: This article is published in Cytokine & Growth Factor Reviews.The article was published on 2017-06-03. It has received 63 citations till now. The article focuses on the topics: Major depressive disorder & Schizophrenia.
Citations
More filters
Journal ArticleDOI
TL;DR: Current understanding of the role of inflammasomes in common degenerative diseases of the brain is discussed and inflammaome‐targeted strategies that may potentially treat these diseases are highlighted.
Abstract: Neuroinflammation and neurodegeneration often result from the aberrant deposition of aggregated host proteins, including amyloid‐β, α‐synuclein, and prions, that can activate inflammasomes. Inflammasomes function as intracellular sensors of both microbial pathogens and foreign as well as host‐derived danger signals. Upon activation, they induce an innate immune response by secreting the inflammatory cytokines interleukin (IL)‐1β and IL‐18, and additionally by inducing pyroptosis, a lytic cell death mode that releases additional inflammatory mediators. Microglia are the prominent innate immune cells in the brain for inflammasome activation. However, additional CNS‐resident cell types including astrocytes and neurons, as well as infiltrating myeloid cells from the periphery, express and activate inflammasomes. In this review, we will discuss current understanding of the role of inflammasomes in common degenerative diseases of the brain and highlight inflammasome‐targeted strategies that may potentially treat these diseases.

380 citations

Journal ArticleDOI
TL;DR: The status of the knowledge and the open questions in the field focusing on the function of intestinal microbial metabolites or products on CNS cells during healthy and inflammatory conditions, such as multiple sclerosis, Alzheimer's and Parkinson’s diseases, and also neuropsychiatric disorders are discussed.
Abstract: The human microbiota has a fundamental role in host physiology and pathology. Gut microbial alteration, also known as dysbiosis, is a condition associated not only with gastrointestinal disorders but also with diseases affecting other distal organs. Recently it became evident that the intestinal bacteria can affect the central nervous system (CNS) physiology and inflammation. The nervous system and the gastrointestinal tract are communicating through a bidirectional network of signaling pathways called the gut-brain axis, which consists of multiple connections, including the vagus nerve, the immune system, and bacterial metabolites and products. During dysbiosis, these pathways are dysregulated and associated with altered permeability of the blood-brain barrier (BBB) and neuroinflammation. However, numerous mechanisms behind the impact of the gut microbiota in neuro-development and -pathogenesis remain poorly understood. There are several immune pathways involved in CNS homeostasis and inflammation. Among those, the inflammasome pathway has been linked to neuroinflammatory conditions such as multiple sclerosis, Alzheimer's and Parkinson's diseases, but also anxiety and depressive-like disorders. The inflammasome complex assembles upon cell activation due to exposure to microbes, danger signals, or stress and lead to the production of pro-inflammatory cytokines (interleukin-1β and interleukin-18) and to pyroptosis. Evidences suggest that there is a reciprocal influence of microbiota and inflammasome activation in the brain. However, how this influence is precisely working is yet to be discovered. Herein, we discuss the status of the knowledge and the open questions in the field focusing on the function of intestinal microbial metabolites or products on CNS cells during healthy and inflammatory conditions, such as multiple sclerosis, Alzheimer's and Parkinson's diseases, and also neuropsychiatric disorders. In particular, we focus on the innate inflammasome pathway as immune mechanism that can be involved in several of these conditions, upon exposure to certain microbes.

229 citations

Journal ArticleDOI
TL;DR: The important role of neuroinflammation in MDD pathogenesis has created a new perspective that the combining of blood IL-6 and other depression-related cytokine levels may help to classify MDD biological subtypes, which may allow physicians to identify the optimal treatment for MDD patients.
Abstract: Major depressive disorder (MDD), which is a leading psychiatric illness across the world, severely affects quality of life and causes an increased incidence of suicide. Evidence from animal as well as clinical studies have indicated that increased peripheral or central cytokine interleukin-6 (IL-6) levels play an important role in stress reaction and depressive disorder, especially physical disorders comorbid with depression. Increased release of IL-6 in MDD has been found to be a factor associated with MDD prognosis and therapeutic response, and may affect a wide range of depressive symptomatology. However, study results of the IL6 genetic effects in MDD are controversial. Increased IL-6 activity may cause depression through activation of hypothalamic-pituitary-adrenal axis or influence of the neurotransmitter metabolism. The important role of neuroinflammation in MDD pathogenesis has created a new perspective that the combining of blood IL-6 and other depression-related cytokine levels may help to classify MDD biological subtypes, which may allow physicians to identify the optimal treatment for MDD patients. To modulate the IL-6 activity by IL-6-related agents, current antidepressive agents, herb medication, pre-/probiotics or non-pharmacological interventions may hold great promise for the MDD patients with inflammatory features.

142 citations

Journal ArticleDOI
Cuiqin Fan1, Qiqi Song1, Peng Wang1, Ye Li1, Mu Yang1, Shu Yan Yu1 
TL;DR: The results suggest that the neuroprotective effects of ginsenoside-Rg1, which may assume the antidepressant-like effect in this animal model of depression, appears to result from amelioration of a CUMS-dependent neuronal deterioration within the vmPFC.
Abstract: Depression is considered a neuropsychiatric disease associated with various neuronal changes within specific brain regions. We previously reported that ginsenoside-Rg1, a potential neuroprotective agent extracted from ginseng, significantly alleviated depressive-like disorders induced by chronic stress in rats. However, the mechanisms by which ginsenoside-Rg1 exerts its neuroprotective effects in depression remain largely uncharacterized. In the present study we confirm that ginsenoside-Rg1 significantly prevented the antidepressant-like effects in a rat model of chronic unpredictable mild stress (CUMS) and report on some of the underlying mechanisms associated with this effect. Specifically, we found that chronic pretreatment with ginsenoside-Rg1 prior to stress exposure significantly suppressed inflammatory pathway activity via alleviating the overexpression of proinflammatory cytokines and the activation of microglia and astrocytes. These effects were accompanied with an attenuation of dendritic spine and synaptic deficits as associated with an upregulation of synaptic-related proteins in the ventral medial prefrontal cortex (vmPFC). In addition, ginsenoside-Rg1 inhibited neuronal apoptosis induced by CUMS exposure, increased Bcl-2 expression and decreased cleaved Caspase-3 and Caspase-9 expression within the vmPFC region. Furthermore, ginsenoside-Rg1 could increase the nuclear factor erythroid 2-related factor (Nrf2) expression and inhibit p38 mitogen-activated protein kinase (p-p38 MAPK) and nuclear factor κB (NF-κB) p65 subunit activation within the vmPFC. Taken together, these results suggest that the neuroprotective effects of ginsenoside-Rg1, which may assume the antidepressant-like effect in this animal model of depression, appears to result from amelioration of a CUMS-dependent neuronal deterioration within the vmPFC. Moreover, they also provide support for the therapeutic potential of ginsenoside-Rg1 in the treatment of stress-related mental disorders.

86 citations


Cites background from "Effects of interleukin-1beta polymo..."

  • ...Inflammatory cytokines are now considered as important proapoptotic factors involved in the progression of neurological disorders (59)....

    [...]

Journal ArticleDOI
TL;DR: It is demonstrated that APN inhibits inflammatory response of microglia to AβO via AdipoR1-AMPK-NF-κB signaling, and APN deficiency aggravates microglian activation and neuroinflammation in AD mice.
Abstract: Microglia-mediated neuroinflammation is important in Alzheimer’s disease (AD) pathogenesis. Extracellular deposition of β-amyloid (Aβ), a major pathological hallmark of AD, can induce microglia activation. Adiponectin (APN), an adipocyte-derived adipokine, exerts anti-inflammatory effects in the periphery and brain. Chronic APN deficiency leads to cognitive impairment and AD-like pathologies in aged mice. Here, we aim to study the role of APN in regulating microglia-mediated neuroinflammation in AD. Inflammatory response of cultured microglia (BV2 cells) to AβO and effects of APN were studied by measuring levels of proinflammatory cytokines (tumor necrosis factor α [TNFα] and interleukin-1β [IL-1β]) in cultured medium before and after exposure to AβO, with and without APN pretreatment. Adiponectin receptor 1 (AdipoR1) and receptor 2 (AdipoR2) were targeted by small interference RNA. To study the neuroprotective effect of APN, cultured HT-22 hippocampal cells were treated with conditioned medium of AβO-exposed BV2 cells or were co-cultured with BV2 cells in transwells. The cytotoxicity of HT-22 hippocampal cells was assessed by MTT reduction. We generated APN-deficient AD mice (APN−/−5xFAD) by crossing APN-knockout mice with 5xFAD mice to determine the effects of APN deficiency on microglia-mediated neuroinflammation in AD. AdipoR1 and AdipoR2 were expressed in BV2 cells and microglia of mice. Pretreatment with APN for 2 h suppressed TNFα and IL-1β release induced by AβO in BV2 cells. Additionally, APN rescued the decrease of AMPK phosphorylation and suppressed nuclear translocation of nuclear factor kappa B (NF-κB) induced by AβO. Compound C, an inhibitor of AMPK, abolished these effects of APN. Knockdown of AdipoR1, but not AdipoR2 in BV2 cells, inhibited the ability of APN to suppress proinflammatory cytokine release induced by AβO. Moreover, pretreatment with APN inhibited the cytotoxicity of HT-22 cells co-cultured with AβO-exposed BV2 cells. Lastly, APN deficiency exacerbated microglia activation in 9-month-old APN−/−5xFAD mice associated with upregulation of TNFα and IL-1β in the cortex and hippocampus. Our findings demonstrate that APN inhibits inflammatory response of microglia to AβO via AdipoR1-AMPK-NF-κB signaling, and APN deficiency aggravates microglia activation and neuroinflammation in AD mice. APN may be a novel therapeutic agent for inhibiting neuroinflammation in AD.

70 citations


Cites background from "Effects of interleukin-1beta polymo..."

  • ...In the brain, IL-1β was synthesized and released mainly by the microglia and astrocytes [88, 89], and AdipoR1 was found to be expressed in astrocyte [74]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: IL 1 is a highly inflammatory molecule and stimulates the production of arachidonic acid metabolites and acts synergistically with other cytokines, particularly tumor necrosis factor.
Abstract: Interleukin 1 (IL 1) is a polypeptide that is produced after infection, injury, or antigenic challenge. Although the macrophage is a primary source of IL 1, epidermal, epithelial, lymphoid, and vascular tissues synthesize IL 1. When IL 1 gains access to the circulation, it acts like a hormone and induces a broad spectrum of systemic changes in neurological, metabolic, hematologic, and endocrinologic systems. Some of the IL 1 that is synthesized remains associated with the plasma membrane and induces changes in local tissues without producing systemic responses. IL 1 affects mesenchymal tissue remodeling where it contributes to both destructive and repair processes. IL 1 activates lymphocytes and plays an important role in the initiation of the immune response. Receptors for IL 1 have been identified, but receptors are scarce and their affinities often do not match the potency of the biological response. The most consistent property of IL 1 is up-regulation of cellular metabolism and increased expression of several genes coding for biologically active molecules. IL 1 is a highly inflammatory molecule and stimulates the production of arachidonic acid metabolites. IL 1 also acts synergistically with other cytokines, particularly tumor necrosis factor. The multitude of biological responses to IL 1 is an example of the rapid adaptive changes that take place to increase the host's defensive mechanisms.

1,532 citations

Journal ArticleDOI
TL;DR: The cellular and molecular components of this previously unsuspected system are being progressively identified and are opening new avenues for understanding brain disorders, including depression.

941 citations

Journal ArticleDOI
Flemming Pociot, J. Mølvig, L. Wogensen, Helle Worsaae1, Jørn Nerup 
TL;DR: It is concluded that the 13.4 kb allele represents an IL‐1β‘high‐secretor’ phenotype, that the observed RFLP may be a genetic susceptibility marker for IDDM in non‐DR3 and non-DR4 individuals and that high IL‐ 1β secretory capacity may be an pathogenic factor for ID DM in these patients.
Abstract: In the present study we searched for restriction fragment length polymorphisms (RFLP) in the human interleukin-1 beta (IL-1 beta) gene and for correlations to monocyte (Mo) function in non-related healthy donors and insulin-dependent diabetic patients. We demonstrated a diallelic polymorphism with the restriction enzyme TaqI consisting of fragments of 9.4 kb and 13.4 kb. No differences in allele or genotype frequencies of this RFLP were observed between randomly selected controls and randomly selected patients with insulin-dependent diabetes mellitus (IDDM). However, when analysing IDDM patients negative for HLA-DR3 and -DR4, our data demonstrate that the 13.4 kb allele is more frequent in this group compared to a matched control group. The functional impact of this RFLP was studied by analysing in vitro stimulated Mo IL-1 beta response. An IL-1 beta allele dosage effect on secretory capacity was observed after LPS-stimulation: 13.4/13.4 kb homozygous individuals secreted significantly more IL-1 beta than 9.4/13.4 kb heterozygous individuals, who secreted significantly more than 9.4/9.4 kb homozygous individuals. Analyses of supernatants from LPS-stimulated Mo cultures from individuals with each TaqI IL-1 beta genotype revealed no differences in the mouse thymocyte co-stimulatory assay when compared on a molar basis, indicating that the TaqI polymorphism gave rise only to quantitative differences in expression levels and probably not to a mutant IL-1 beta.(ABSTRACT TRUNCATED AT 250 WORDS)

895 citations

Journal ArticleDOI
TL;DR: It is proposed that the proliferation of astroglia in specific brain regions may be regulated by the signaled release of IL-1 from activated microglial cells.
Abstract: By screening specific populations of rat brain cells, we found that ameboid microglia secrete an 18 kD peptide with IL-1 biological activity. The IL-1 activity released by microglia was found to be identical to rat macrophage IL-1 on fractionation by gel filtration and high pressure liquid anion-exchange chromatography, and it was neutralized by an antiserum specific for murine IL-1. When added to astroglia grown in culture, microglial IL-1 increased the cell number of five- to sevenfold, and increased astroglial incorporation of [3H]thymidine by three- to fivefold. We propose that the proliferation of astroglia in specific brain regions may be regulated by the signaled release of IL-1 from activated microglial cells.

860 citations

Journal ArticleDOI
TL;DR: It is proposed that secretion of IL-1β occurs on a continuum, dependent upon stimulus strength and the extracellular IL- 1β requirement.

789 citations