scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Effects of interplay of nanoparticles, surfactants and base fluid on the surface tension of nanocolloids

05 May 2017-European Physical Journal E (Springer Berlin Heidelberg)-Vol. 40, Iss: 5, pp 53-53
TL;DR: The present paper conclusively explains several physical phenomena observed, yet hitherto unexplained, in the case of the surface tension of such complex fluids by segregating the individual contributions of each component of the colloidal system.
Abstract: A systematically designed study has been conducted to understand and demarcate the degree of contribution by the constituting elements to the surface tension of nanocolloids. The effects of elements such as surfactants, particles and the combined effects of these on the surface tension of these complex fluids are studied employing the pendant drop shape analysis method by fitting the Young-Laplace equation. Only the particle has shown an increase in the surface tension with particle concentration in a polar medium like DI water, whereas only a marginal effect of particles on surface tension in weakly polar mediums like glycerol and ethylene glycol has been demonstrated. Such behaviour has been attributed to the enhanced desorption of particles to the interface and a theory has been presented to quantify this. The combined particle and surfactant effect on the surface tension of a complex nanofluid system showed a decreasing behaviour with respect to the particle and surfactant concentration with a considerably feeble effect of particle concentration. This combined colloidal system recorded a surface tension value below the surface tension of an aqueous surfactant system at the same concentration, which is a counterintuitive observation as only the particle results in an increase in the surface tension and only the surfactant results in a decrease in the surface tension. The possible physical mechanism behind such an anomaly happening at the complex fluid air interface has been explained. Detailed analyses based on thermodynamic, mechanical and chemical equilibrium of the constituents and their adsorption-desorption characteristics as extracted from the Gibbs adsorption analysis have been provided. The present paper conclusively explains several physical phenomena observed, yet hitherto unexplained, in the case of the surface tension of such complex fluids by segregating the individual contributions of each component of the colloidal system.
Citations
More filters
Journal ArticleDOI
01 Apr 2019-Fuel
TL;DR: In this paper, the authors reviewed the effects of NPs in low salinity water (LSW) and surfactant on the IFT of sandstone and carbonate reservoirs.

200 citations

Journal ArticleDOI
TL;DR: In this article, a review on the effect of nanoparticles and base fluid nature, temperature, use of surfactant, nanoparticle concentration, size and shape as well on the surface tension and wettability of nanofluids is presented.
Abstract: Nanofluids are recent nanomaterials with improved thermophysical properties that could enhance the efficiency and reliability of heat transfer systems. Relevant properties for heat transfer calculation, thin film flows, droplet impingements or microfluidic are surface tension and wettability. However, to date, the understanding of those properties in nanofluids field is at the beginning compared to transport properties. At this stage, this review focus on the effect of nanoparticles and base fluid nature, temperature, use of surfactant, nanoparticle concentration, size and shape as well on the surface tension and wettability of nanofluids. After the presentation of heat transfer processes involving the influence of surface tension and wettability, this paper is organized according to the nature of the nanoparticles dealing with oxide, carbon-based and metallic nanofluids as well as unusual or less considered nature of nanoparticles. The factors affecting the surface tension of nanofluids are relatively well identified, but concentration and surfactant effects present some inconsistent outcomes. In any case, the dispersion of nanoparticles have an effect on the surface tension of base fluid significantly lower than that on transport properties. Based on results available in the literature and existing empirical correlations, a comprehensive assessment, challenges and future works are suggested.

111 citations

Journal ArticleDOI
TL;DR: In this article, a review of the mechanism affecting the flow of nanoparticles in porous media as it relates to enhanced oil recovery is presented, focusing on the physical aspect of the flow, the microscopic rheological behaviour and the adsorption of the nanoparticles.
Abstract: Nanotechnology has found its way to petroleum engineering, it is well-accepted path in the oil and gas industry to recover more oil trapped in the reservoir. But the addition of nanoparticles to a liquid can result in the simplest flow becoming complex. To understand the working mechanism, there is a need to study the flow behaviour of these particles. This review highlights the mechanism affecting the flow of nanoparticles in porous media as it relates to enhanced oil recovery. The discussion focuses on chemical-enhanced oil recovery, a review on laboratory experiment on wettability alteration, effect of interfacial tension and the stability of emulsion and foam is discussed. The flow behaviour of nanoparticles in porous media was discussed laying emphasis on the physical aspect of the flow, the microscopic rheological behaviour and the adsorption of the nanoparticles. It was observed that nanofluids exhibit Newtonian behaviour at low shear rate and non-Newtonian behaviour at high shear rate. Gravitational and capillary forces are responsible for the shift in wettability from oil-wet to water-wet. The dominant mechanisms of foam flow process were lamellae division and bubble to multiple bubble lamellae division. In a water-wet system, the dominant mechanism of flow process and residual oil mobilization are lamellae division and emulsification, respectively. Whereas in an oil-wet system, the generation of pre-spinning continuous gas foam was the dominant mechanism. The literature review on oil displacement test and field trials indicates that nanoparticles can recover additional oil. The challenges encountered have opened new frontier for research and are highlighted herein.

90 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the effects of nanoparticle densifiers added to printing liquid on the mechanical performance and manufacturability of ceramics made using binder jetting, and showed that the presence of the nanoparticle had a marked effect on the physical and mechanical properties of the samples whose relative density increased by about 30%.

82 citations

Journal ArticleDOI
TL;DR: In this paper, a review of nanoparticles in porous media in view of criteria needed for application in enhanced oil recovery (EOR) subsurface projects is presented, where different promising mechanisms for nanoparticles assisted EOR followed by controlling factors to optimize the EOR efficiency are deliberated.

78 citations

References
More filters
MonographDOI
01 Jan 1989

2,269 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present an exhaustive review of the literature in this area and suggest a direction for future developments, including heat transfer, material science, physics, chemical engineering and synthetic chemistry.
Abstract: Suspended nanoparticles in conventional fluids, called nanofluids, have been the subject of intensive study worldwide since pioneering researchers recently discovered the anomalous thermal behavior of these fluids. The enhanced thermal conductivity of these fluids with small-particle concentration was surprising and could not be explained by existing theories. Micrometer-sized particle-fluid suspensions exhibit no such dramatic enhancement. This difference has led to studies of other modes of heat transfer and efforts to develop a comprehensive theory. This article presents an exhaustive review of these studies and suggests a direction for future developments. The review and suggestions could be useful because the literature in this area is spread over a wide range of disciplines, including heat transfer, material science, physics, chemical engineering and synthetic chemistry.

1,069 citations

Journal ArticleDOI
TL;DR: A critical synthesis of the variants within the thermophysical properties of nanofluids is presented in this article, where the experimental results for the effective thermal conductivity and viscosity reported by several authors are in disagreement.

943 citations

Journal ArticleDOI
TL;DR: The first reported measurements of the dynamic surface excess Gamma(t), using the overflowing cylinder in conjunction with neutron reflection, are described.

791 citations

Journal ArticleDOI
TL;DR: In this paper, a simple and accurate approach to the treatment of pyrene 1:3 ratio data in the context of critical micelle concentration determination in surfactant solutions is established.

699 citations