scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Effects of selenium and vitamin E on white muscle disease.

31 Oct 1958-Science (American Association for the Advancement of Science)-Vol. 128, Iss: 3331, pp 1090-1090
About: This article is published in Science.The article was published on 1958-10-31. It has received 233 citations till now. The article focuses on the topics: White Muscle Disease & Vitamin E.
Citations
More filters
Journal ArticleDOI
TL;DR: The pig as model: The PIG AS MODEL, a chronology of key events and stories from the build-up to the deadliest event in the history of the Great Fire of London, is described.
Abstract: ��:�����:�: ���f;��'::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: THE PIG AS MODEL . Maternal and Fetal Nutrition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Infant Nutrition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Carbohydrate and Lipid Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Amino Acid Metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Vitamin and Mineral Nutrition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

679 citations

Journal ArticleDOI
TL;DR: A point-by-point comparison of the chemistry of selenium with the atom it replaces in biology, sulfur, shows that redox chemistry is the largest chemical difference between the two chalcogens.
Abstract: The authors were asked by the Editors of ACS Chemical Biology to write an article titled “Why Nature Chose Selenium” for the occasion of the upcoming bicentennial of the discovery of selenium by the Swedish chemist Jons Jacob Berzelius in 1817 and styled after the famous work of Frank Westheimer on the biological chemistry of phosphate [Westheimer, F. H. (1987) Why Nature Chose Phosphates, Science 235, 1173–1178]. This work gives a history of the important discoveries of the biological processes that selenium participates in, and a point-by-point comparison of the chemistry of selenium with the atom it replaces in biology, sulfur. This analysis shows that redox chemistry is the largest chemical difference between the two chalcogens. This difference is very large for both one-electron and two-electron redox reactions. Much of this difference is due to the inability of selenium to form π bonds of all types. The outer valence electrons of selenium are also more loosely held than those of sulfur. As a result,...

531 citations

Book ChapterDOI
TL;DR: This chapter reviews the geomedical aspects of selenium (Se), ranging from the soil through the plants to animal and human nutrition, and interactions occur with other elements and compounds.
Abstract: Publisher Summary This chapter reviews the geomedical aspects of selenium (Se), ranging from the soil through the plants to animal and human nutrition. Selenium has several essential functions in the animal and human body, and interactions occur with other elements and compounds. The beneficial effects of Se are obtained at different concentration levels, depending on the functions of Se and on interacting factors such as vitamin E, fatty acids, and sulfur. The nutritional minimum level for animals and humans is about 0.05–0.10 ppm Se in dry fodder/food, and intake below that cause severe deficiency diseases. At somewhat higher levels of Se intake, there are indications of a protective effect toward a number of human diseases, and toxic effects of Se occur with exposure to levels of 2–5 ppm Se or more, depending on the chemical form of the Se. Selenium toxicity in livestock is known in a few areas around the world, but Se deficiency has turned out to be much more common than Se toxicity. The Se deficiency problem is severe in New Zealand, in parts of China, in parts of North America, and in the Scandinavian countries.

250 citations

MonographDOI
06 May 2010
TL;DR: In this article, the authors present the context for selenium risk assessment in the context of a global problem, which they call Selenium risk assessment (SRL) problem.
Abstract: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Background and Need for Workshop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Workshop Purpose and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Participation and Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Workgroup Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Workgroup 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Problem formulation: Context for selenium risk assessment . . . . . . . . . . . . . . . . . . . . . 9 Selenium is a global problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Conceptual model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 How to investigate a potential selenium problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Workgroup 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Environmental partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Workgroup 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Bioaccumulation and trophic transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Workgroup 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Selenium toxicity to aquatic organisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Workgroup 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Risk characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Importance of problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 Risk characterization: Unique challenges concerning selenium . . . . . . . . . . . . . . . . . . 26 Risk management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Overall Workshop Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Appendix: SETAC Pellston Workshop Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 List of Figures Figure 1 Conceptual model depicting Se dynamics and transfer in aquatic ecosystems . . . . . . . . . . . . .11 Figure 2 Hierarchy of effects across levels of biological organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Figure 3 Potential sources of Se to aquatic systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Figure 4 Selenium species associated with major processes in aquatic systems . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Figure 5 Partitioning of Se among environmental compartments in a typical aquatic system. . . .16 Figure 6 Selenium enrichment and trophic transfer in aquatic food webs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Figure 7 Selenium accumulation in different species of algae, invertebrates, and fish . . . . . . . . . . . . . . . .20 Figure 8 Conceptual pathway of Se transfer in aquatic ecosystems and relative certainty with which Se concentrations in environmental compartments can be assessed in making accurate characterizations of risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 List of Tables Table 1 Assessment endpoints and measures of exposure and effect for aquatic and aquaticlinked organisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Table 2 Uncertainties and recommendations for future research pertaining to toxicity of Se species . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 Ecological Assessment of Selenium in the Aquatic Environment 4

241 citations

Journal ArticleDOI
TL;DR: The relationships between selenium intake/status and various health outcomes, in particular cardiomyopathy, myocardial ischemia/infarction and reperfusion injury are reviewed and Selenium as a biomarker in coronary heart disease is described.
Abstract: The trace element selenium is of high importance for many of the body’s regulatory and metabolic functions. Balanced selenium levels are essential, whereas dysregulation can cause harm. A rapidly increasing number of studies characterizes the wide range of selenium dependent functions in the human body and elucidates the complex and multiple physiological and pathophysiological interactions of selenium and selenoproteins. For the majority of selenium dependent enzymes, several biological functions have already been identified, like regulation of the inflammatory response, antioxidant properties and the proliferation/differentiation of immune cells. Although the potential role of selenium in the development and progression of cardiovascular disease has been investigated for decades, both observational and interventional studies of selenium supplementation remain inconclusive and are considered in this review. This review covers current knowledge of the role of selenium and selenoproteins in the human body and its functional role in the cardiovascular system. The relationships between selenium intake/status and various health outcomes, in particular cardiomyopathy, myocardial ischemia/infarction and reperfusion injury are reviewed. We describe, in depth, selenium as a biomarker in coronary heart disease and highlight the significance of selenium supplementation for patients undergoing cardiac surgery.

226 citations


Cites background from "Effects of selenium and vitamin E o..."

  • ...First hints of its central role date back to the 1960s when its functional role in the development of white muscle disease was revealed [1]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Chicks fed a diet containing torula yeast developed exudative diathesis which could be prevented by either vit.
Abstract: Summary(1) Chicks fed a diet containing torula yeast developed exudative diathesis which could be prevented by either vit. E or a non-fat soluble substance in casein and in a number of pork tissues. (2) This factor could be made water soluble by acid hydrolysis. It was adsorbed on both anion and cation exchange resins and thus behaved as an ampholyte. (3) An alkaline ash but not an acid ash of pork kidney was effective in preventing exudative diathesis. (4) Selenium as selenite prevented exudative diathesis at 0.3 ppm. Tellurium as tellurite was ineffective at 3 ppm. Anionic arsenic at 10 ppm was inactive.

202 citations

Journal ArticleDOI
TL;DR: It is shown that exudative diathesis in the chick, produced by vit.
Abstract: SummaryIt is shown that exudative diathesis in the chick, produced by vit. E-free Torula yeast diets, is prevented by crude sources and purified fractions of Factor 3. Selenium, recently identified as the integral part of Factor 3, was highly active. Protection was obtained with 10 μg of selenium per 100 g of diet in form of seleno-cystathionine or sodium selenite; 200 μg of elemental selenium also were effective. All 3 forms of the element stimulated growth.

171 citations