scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Efficient four fragment cloning for the construction of vectors for targeted gene replacement in filamentous fungi

TL;DR: The new vectors designed for USER Friendly cloning provided a fast reliable method to construct vectors for targeted gene manipulations in fungi.
Abstract: The rapid increase in whole genome fungal sequence information allows large scale functional analyses of target genes. Efficient transformation methods to obtain site-directed gene replacement, targeted over-expression by promoter replacement, in-frame epitope tagging or fusion of coding sequences with fluorescent markers such as GFP are essential for this process. Construction of vectors for these experiments depends on the directional cloning of two homologous recombination sequences on each side of a selection marker gene. Here, we present a USER Friendly cloning based technique that allows single step cloning of the two required homologous recombination sequences into different sites of a recipient vector. The advantages are: A simple experimental design, free choice of target sequence, few procedures and user convenience. The vectors are intented for Agrobacterium tumefaciens and protoplast based transformation technologies. The system has been tested by the construction of vectors for targeted replacement of 17 genes and overexpression of 12 genes in Fusarium graminearum. The results show that four fragment vectors can be constructed in a single cloning step with an average efficiency of 84% for gene replacement and 80% for targeted overexpression. The new vectors designed for USER Friendly cloning provided a fast reliable method to construct vectors for targeted gene manipulations in fungi.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
12 Jun 2018-PLOS ONE
TL;DR: Several putative secreted effector proteins that probably contribute to V. nonalfalfae colonization of hop were identified in this study and will advance the understanding of Verticillium wilt disease.
Abstract: The vascular plant pathogen Verticillium nonalfalfae causes Verticillium wilt in several important crops. VnaSSP4.2 was recently discovered as a V. nonalfalfae virulence effector protein in the xylem sap of infected hop. Here, we expanded our search for candidate secreted effector proteins (CSEPs) in the V. nonalfalfae predicted secretome using a bioinformatic pipeline built on V. nonalfalfae genome data, RNA-Seq and proteomic studies of the interaction with hop. The secretome, rich in carbohydrate active enzymes, proteases, redox proteins and proteins involved in secondary metabolism, cellular processing and signaling, includes 263 CSEPs. Several homologs of known fungal effectors (LysM, NLPs, Hce2, Cerato-platanins, Cyanovirin-N lectins, hydrophobins and CFEM domain containing proteins) and avirulence determinants in the PHI database (Avr-Pita1 and MgSM1) were found. The majority of CSEPs were non-annotated and were narrowed down to 44 top priority candidates based on their likelihood of being effectors. These were examined by spatio-temporal gene expression profiling of infected hop. Among the highest in planta expressed CSEPs, five deletion mutants were tested in pathogenicity assays. A deletion mutant of VnaUn.279, a lethal pathotype specific gene with sequence similarity to SAM-dependent methyltransferase (LaeA), had lower infectivity and showed highly reduced virulence, but no changes in morphology, fungal growth or conidiation were observed. Several putative secreted effector proteins that probably contribute to V. nonalfalfae colonization of hop were identified in this study. Among them, LaeA gene homolog was found to act as a potential novel virulence effector of V. nonalfalfae. The combined results will serve for future characterization of V. nonalfalfae effectors, which will advance our understanding of Verticillium wilt disease.

19 citations

Journal ArticleDOI
TL;DR: Results indicate that the biosynthetic pathway of berkeleyacetals would be valuable for discovery of novel natural products and will accelerate the exploitation of prodigious natural products in filamentous fungi.

18 citations

Journal ArticleDOI
TL;DR: Sequence analysis of the A. carbonarius cipC gene promoter and the phenotype of the ΔcipC disrupted mutant suggests that CipC could be a stress response protein that would be up-regulated concomitantly with OTA production.

17 citations

Journal ArticleDOI
TL;DR: Physiological analysis revealed that the colonization pattern of the ∆Acpks mutant was similar to that of the WT strain, with high production of GLA in the colonized tissue, suggesting that OTA accumulation does not contribute to A. carbonarius pathogenicity.
Abstract: Aspergillus carbonarius is the major producer of ochratoxin A (OTA) among Aspergillus species, but the contribution of this secondary metabolite to fungal virulence has not been assessed. We characterized the functions and addressed the roles of three factors in the regulation of OTA synthesis and pathogenicity in A. carbonarius: LaeA, a transcriptional factor regulating the production of secondary metabolites; polyketide synthase, required for OTA biosynthesis; and glucose oxidase (GOX), regulating gluconic acid (GLA) accumulation and acidification of the host tissue during fungal growth. Deletion of laeA in A. carbonarius resulted in significantly reduced OTA production in colonized nectarines and grapes. The ∆laeA mutant was unable to efficiently acidify the colonized tissue, as a direct result of diminished GLA production, leading to attenuated virulence in infected fruit compared to the wild type (WT). The designed Acpks-knockout mutant resulted in complete inhibition of OTA production in vitro and in colonized fruit. Interestingly, physiological analysis revealed that the colonization pattern of the ∆Acpks mutant was similar to that of the WT strain, with high production of GLA in the colonized tissue, suggesting that OTA accumulation does not contribute to A. carbonarius pathogenicity. Disruption of the Acgox gene inactivated GLA production in A. carbonarius, and this mutant showed attenuated virulence in infected fruit compared to the WT strain. These data identify the global regulator LaeA and GOX as critical factors modulating A. carbonarius pathogenicity by controlling transcription of genes important for fungal secondary metabolism and infection.

16 citations


Cites methods from "Efficient four fragment cloning for..."

  • ...Both DNA fragments and the predigested pRFHU2 binary vector (Frandsen et al., 2008) were mixed together and treated with the USER enzyme (New England Biolabs) to obtain the deletion vector....

    [...]

Journal ArticleDOI
16 May 2019-Toxins
TL;DR: Part of the biosynthetic route of fusaoctaxin A is illuminated, which is cleaved into the tripeptide fusatrixin A and the pentapeptides fusapentAXin A during transport by a cluster-specific ABC transporter with peptidase activity.
Abstract: Fungal non-ribosomal peptide synthetase (NRPS) clusters are spread across the chromosomes, where several modifying enzyme-encoding genes typically flank one NRPS. However, a recent study showed that the octapeptide fusaoctaxin A is tandemly synthesized by two NRPSs in Fusarium graminearum. Here, we illuminate parts of the biosynthetic route of fusaoctaxin A, which is cleaved into the tripeptide fusatrixin A and the pentapeptide fusapentaxin A during transport by a cluster-specific ABC transporter with peptidase activity. Further, we deleted the histone H3K27 methyltransferase kmt6, which induced the production of fusaoctaxin A.

16 citations


Cites methods from "Efficient four fragment cloning for..."

  • ...The construction of vectors for over-expression and knockout of selective NRPS genes was performed using the well-established USER friendly cloning technique [12]....

    [...]

  • ...The transformation vectors were constructed by USER friendly cloning [12], and second generation Illumina and third generation MinION Nanopore sequencing verified that the resulting mutants were correct (Figure S2)....

    [...]

  • ...The transformation vectors were constructed by USER friendly cloning [12], and second generation Illumina and third generation MinION Nanopore sequencing verifi d that the r sulting mutants were correct (Figur S2)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: These procedures, which can circumvent the need for large-scale phage or plasmid growths, preparative gel-electrophoresis and the screening of molecular clones, can facilitate the rapid study of sequence-specific interactions of proteins and DNA.
Abstract: Specific, end-labeled DNA fragments can be simply and rapidly prepared using the polymerase chain reaction (PCR). Such fragments are suitable for use in DNase I protection footprint assays, chemical sequencing reactions, and for the production and analysis of paused RNA polymerase transcription complexes. Moreover, a general means of introducing a specific mutation at any position along the length of such PCR-generated fragments is described. These procedures, which can circumvent the need for large-scale phage or plasmid growths, preparative gel-electrophoresis and the screening of molecular clones, can facilitate the rapid study of sequence-specific interactions of proteins and DNA. A rapid means of removing excess oligonucleotide primers from completed PCRs is also described.

2,471 citations


"Efficient four fragment cloning for..." refers methods in this paper

  • ...Several laboratories have solved this problem by dividing the replacement constructs into two, a technique known as bipartite gene-targeting or split-marker recombination [6- 8]. In this technique, the two HRS's are fused with two thirds of either the 3' or 5'end of the selection marker gene, by fusion-PCR [ 9 ]....

    [...]

Journal ArticleDOI
TL;DR: Questions are addressed, including which evolutionary pressures led to gene clustering, why closely related species produce different profiles of secondary metabolites, and whether fungal genomics will accelerate the discovery of new pharmacologically active natural products.
Abstract: Much of natural product chemistry concerns a group of compounds known as secondary metabolites. These low-molecular-weight metabolites often have potent physiological activities. Digitalis, morphine and quinine are plant secondary metabolites, whereas penicillin, cephalosporin, ergotrate and the statins are equally well known fungal secondary metabolites. Although chemically diverse, all secondary metabolites are produced by a few common biosynthetic pathways, often in conjunction with morphological development. Recent advances in molecular biology, bioinformatics and comparative genomics have revealed that the genes encoding specific fungal secondary metabolites are clustered and often located near telomeres. In this review, we address some important questions, including which evolutionary pressures led to gene clustering, why closely related species produce different profiles of secondary metabolites, and whether fungal genomics will accelerate the discovery of new pharmacologically active natural products.

1,488 citations


"Efficient four fragment cloning for..." refers background in this paper

  • ...The use of Proofreading DNA polymerase is essential when making targeted genome modifications in fungi, due to the close spacing of fungal genes [26], which often means that the HRS extends into neighbouring genes or their regulatory sequences....

    [...]

Journal ArticleDOI
TL;DR: A new procedure has been developed for the efficient cloning of complex PCR mixtures, resulting in libraries exclusively consisting of recombinant clones, and the procedure is applied for the cloning of inter-ALU fragments from hybrid cell-lines and human cosmid clones.
Abstract: A new procedure has been developed for the efficient cloning of complex PCR mixtures, resulting in libraries exclusively consisting of recombinant clones. Recombinants are generated between PCR products and a PCR-amplified plasmid vector. The procedure does not require the use of restriction enzymes, T4 DNA ligase or alkaline phosphatase. The 5'-ends of the primers used to generate the cloneable PCR fragments contain an additional 12 nucleotide (nt) sequence lacking dCMP. As a result, the amplification products include 12-nt sequences lacking dGMP at their 3'-ends. The 3'-terminal sequence can be removed by the action of the (3'----5') exonuclease activity of T4 DNA polymerase in the presence of dGTP, leading to fragments with 5'-extending single-stranded (ss) tails of a defined sequence and length. Similarly, the entire plasmid vector is amplified with primers homologous to sequences in the multiple cloning site. The vector oligos have additional 12-nt tails complementary to the tails used for fragment amplification, permitting the creation of ss-ends with T4 DNA polymerase in the presence of dCTP. Circularization can occur between vector molecules and PCR fragments as mediated by the 12-nt cohesive ends, but not in mixtures lacking insert fragments. The resulting circular recombinant molecules do not require in vitro ligation for efficient bacterial transformation. We have applied the procedure for the cloning of inter-ALU fragments from hybrid cell-lines and human cosmid clones.

1,185 citations


"Efficient four fragment cloning for..." refers methods in this paper

  • ...Examples are the Xi-cloning, InFusion cloning, Ligase independent cloning (LIC-PCR), Recombinational cloning and USER Friendly cloning techniques [16-20]....

    [...]

Journal ArticleDOI
TL;DR: This study describes a method for rapidly creating knockout mutants in which it makes use of yeast recombinational cloning, Neurospora mutant strains deficient in nonhomologous end-joining DNA repair, custom-written software tools, and robotics.
Abstract: The low rate of homologous recombination exhibited by wild-type strains of filamentous fungi has hindered development of high-throughput gene knockout procedures for this group of organisms. In this study, we describe a method for rapidly creating knockout mutants in which we make use of yeast recombinational cloning, Neurospora mutant strains deficient in nonhomologous end-joining DNA repair, custom-written software tools, and robotics. To illustrate our approach, we have created strains bearing deletions of 103 Neurospora genes encoding transcription factors. Characterization of strains during growth and both asexual and sexual development revealed phenotypes for 43% of the deletion mutants, with more than half of these strains possessing multiple defects. Overall, the methodology, which achieves high-throughput gene disruption at an efficiency >90% in this filamentous fungus, promises to be applicable to other eukaryotic organisms that have a low frequency of homologous recombination.

1,074 citations


"Efficient four fragment cloning for..." refers background or methods in this paper

  • ...crassa, Colot and coworks [1], also allows for efficient four fragment cloning....

    [...]

  • ...Contrary to Saccharomyces cerevisiae, where 30 bp is sufficient, many filamentous fungi require longer HRS [1], eg Fusarium graminearum needs 400 bp [2] 1500 bp is reported for Aspergillus niger [3] and around 1000 bp for Neurospora crassa [4]....

    [...]

  • ...Vector construction for targeted replacement of genes is reduced to design of two primer pairs, which will permit automation of the experimental design as required for high-throughput knockout projects [1]....

    [...]

  • ...Recombinational cloning of the two required HRS with a selection marker gene and a vector backbone is carried out in yeast, followed by PCR amplification of the two HRS and selection marker gene [1]....

    [...]

Journal ArticleDOI
TL;DR: It is reported that A. tumefaciens can also transfer its T-DNA efficiently to the filamentous fungus Aspergillus awamori, demonstrating DNA transfer between a prokaryote and a filamentous fungi.
Abstract: Agrobacterium tumefaciens transfers part of its Ti plasmid, the T-DNA, to plant cells during tumorigenesis. It is routinely used for the genetic modification of a wide range of plant species. We report that A. tumefaciens can also transfer its T-DNA efficiently to the filamentous fungus Aspergillus awamori, demonstrating DNA transfer between a prokaryote and a filamentous fungus. We transformed both protoplasts and conidia with frequencies that were improved up to 600-fold as compared with conventional techniques for transformation of A. awamori protoplasts. The majority of the A. awamori transformants contained a single T-DNA copy randomly integrated at a chromosomal locus. The T-DNA integrated into the A. awamori genome in a manner similar to that described for plants. We also transformed a variety of other filamentous fungi, including Aspergillus niger, Fusarium venenatum, Trichoderma reesei, Colletotrichum gloeosporioides, Neurospora crassa, and the mushroom Agaricus bisporus, demonstrating that transformation using A. tumefaciens is generally applicable to filamentous fungi.

893 citations


"Efficient four fragment cloning for..." refers background in this paper

  • ...The Agrobacterium tumefaciens mediated transformation (ATMT) technology [10] has the advantage of being independent of protoplast formation and can be used directly on a wide variety of fungal species and tissue types [11]....

    [...]