scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole

TL;DR: In this paper, the authors describe global, 3D, time-dependent, non-radiative, general-relativistic, magnetohydrodynamic simulations of accreting black holes (BHs).
Abstract: We describe global, 3D, time-dependent, non-radiative, general-relativistic, magnetohydrodynamic simulations of accreting black holes (BHs). The simulations are designed to transport a large amount of magnetic flux to the centre, more than the accreting gas can force into the BH. The excess magnetic flux remains outside the BH, impedes accretion, and leads to a magnetically arrested disc. We find powerful outflows. For a BH with spin parameter a = 0.5, the efficiency with which the accretion system generates outflowing energy in jets and winds is η ≈ 30 per cent. For a = 0.99, we find η ≈ 140 per cent, which means that more energy flows out of the BH than flows in. The only way this can happen is by extracting spin energy from the BH. Thus the a = 0.99 simulation represents an unambiguous demonstration, within an astrophysically plausible scenario, of the extraction of net energy from a spinning BH via the Penrose–Blandford–Znajek mechanism. We suggest that magnetically arrested accretion might explain observations of active galactic nuclei with apparent η ≈ few × 100 per cent.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors classified the hot accretion flows into two broad classes: cold and hot, and showed that hot flows are associated with jets and strong winds, and that they are present in low-luminosity active galactic nuclei and in black hole X-ray binaries in the hard and quiescent states.
Abstract: Black hole accretion flows can be divided into two broad classes: cold and hot. Whereas cold accretion flows consist of cool optically thick gas and are found at relatively high mass accretion rates, hot accretion flows, the topic of this review, are virially hot and optically thin, and occur at lower mass accretion rates. They are described by accretion solutions such as the advection-dominated accretion flow and luminous hot accretion flow. Because of energy advection, the radiative efficiency of these flows is in general lower than that of a standard thin accretion disk. Moreover, the efficiency decreases with decreasing mass accretion rate. Observations show that hot accretion flows are associated with jets. In addition, theoretical arguments suggest that hot flows should produce strong winds. Hot accretion flows are believed to be present in low-luminosity active galactic nuclei and in black hole X-ray binaries in the hard and quiescent states. The prototype is Sgr A*, the ultralow-luminosity supermassive black hole at our Galactic center. The jet, wind, and radiation from a supermassive black hole with a hot accretion flow can interact with the external interstellar medium and modify the evolution of the host galaxy.

1,270 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidallydominated (R-z directed) magnetic fields.
Abstract: Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is limited by initial conditions), so they should prove useful for testing accretion-jet theories and measuring a/M in systems such as SgrA* and M87.

818 citations

Journal ArticleDOI
Kazunori Akiyama, Antxon Alberdi1, Walter Alef2, Keiichi Asada3  +259 moreInstitutions (62)
TL;DR: In this article, a large library of models based on general relativistic magnetohydrodynamic (GRMHD) simulations and synthetic images produced by GRS was constructed and compared with the observed visibilities.
Abstract: The Event Horizon Telescope (EHT) has mapped the central compact radio source of the elliptical galaxy M87 at 1.3 mm with unprecedented angular resolution. Here we consider the physical implications of the asymmetric ring seen in the 2017 EHT data. To this end, we construct a large library of models based on general relativistic magnetohydrodynamic (GRMHD) simulations and synthetic images produced by general relativistic ray tracing. We compare the observed visibilities with this library and confirm that the asymmetric ring is consistent with earlier predictions of strong gravitational lensing of synchrotron emission from a hot plasma orbiting near the black hole event horizon. The ring radius and ring asymmetry depend on black hole mass and spin, respectively, and both are therefore expected to be stable when observed in future EHT campaigns. Overall, the observed image is consistent with expectations for the shadow of a spinning Kerr black hole as predicted by general relativity. If the black hole spin and M87's large scale jet are aligned, then the black hole spin vector is pointed away from Earth. Models in our library of non-spinning black holes are inconsistent with the observations as they do not produce sufficiently powerful jets. At the same time, in those models that produce a sufficiently powerful jet, the latter is powered by extraction of black hole spin energy through mechanisms akin to the Blandford-Znajek process. We briefly consider alternatives to a black hole for the central compact object. Analysis of existing EHT polarization data and data taken simultaneously at other wavelengths will soon enable new tests of the GRMHD models, as will future EHT campaigns at 230 and 345 GHz.

808 citations

Journal ArticleDOI
20 Nov 2014-Nature
TL;DR: An analysis of archival observations of a sample of blazars (quasars whose jets point towards Earth) that overcomes previous limitations finds a clear correlation between jet power, as measured through the γ-ray luminosity, and accretion luminosity; this implies that the magnetic field threading the black hole horizon reaches the maximum value sustainable by the accreting matter.
Abstract: Blazars are quasars with a jet pointing towards Earth; analysis of archival observations of a sample of blazars reveals that jet power is larger than, and correlates with, the accretion luminosity, in agreement with numerical simulations. An analysis of archival observations of a sample of blazars — quasars whose jets point towards Earth — shows a clear correlation between the power of the relativistic jets produced from these active galactic nuclei measured as γ-ray luminosity and the accretion luminosity as measured by the broad emission lines. In agreement with numerical simulations, jet power dominates over the disk luminosity, which suggests that the rotational energy of spinning black holes powers these jets and that the magnetic field is a catalyst for this process. Theoretical models for the production of relativistic jets from active galactic nuclei predict that jet power arises from the spin and mass of the central supermassive black hole, as well as from the magnetic field near the event horizon1. The physical mechanism underlying the contribution from the magnetic field is the torque exerted on the rotating black hole by the field amplified by the accreting material. If the squared magnetic field is proportional to the accretion rate, then there will be a correlation between jet power and accretion luminosity. There is evidence for such a correlation2,3,4,5,6,7,8, but inadequate knowledge of the accretion luminosity of the limited and inhomogeneous samples used prevented a firm conclusion. Here we report an analysis of archival observations of a sample of blazars (quasars whose jets point towards Earth) that overcomes previous limitations. We find a clear correlation between jet power, as measured through the γ-ray luminosity, and accretion luminosity, as measured by the broad emission lines, with the jet power dominating the disk luminosity, in agreement with numerical simulations9. This implies that the magnetic field threading the black hole horizon reaches the maximum value sustainable by the accreting matter10.

418 citations

Journal ArticleDOI
TL;DR: In this article, the authors present results from two long-duration general relativistic magneto-hydrodynamic (GRMHD) simulations of advection-dominated accretion around a non-spinning black hole.
Abstract: We present results from two long-duration general relativistic magneto-hydrodynamic (GRMHD) simulations of advection-dominated accretion around a non-spinning black hole. The first simulation was designed to avoid significant accumulation of magnetic flux around the black hole. This simulation was run for a time of 200 000 GM/c3 and achieved inflow equilibrium out to a radius ∼90 GM/c2. Even at this relatively large radius, the mass outflow rate is found to be only 60 per cent of the net mass inflow rate into the black hole. The second simulation was designed to achieve substantial magnetic flux accumulation around the black hole in a magnetically arrested disc. This simulation was run for a shorter time of 100 000 GM/c3. Nevertheless, because the mean radial velocity was several times larger than in the first simulation, it reached inflow equilibrium out to a radius ∼170 GM/c2. Here, becomes equal to at r ∼ 160 GM/c2. Since the mass outflow rates in the two simulations do not show robust convergence with time, it is likely that the true outflow rates are lower than our estimates. The effect of black hole spin on mass outflow remains to be explored. Neither simulation shows strong evidence for convection, though a complete analysis including the effect of magnetic fields is left for the future.

385 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a linear analysis is presented of the instability, which is local and extremely powerful; the maximum growth rate which is of the order of the angular rotation velocity, is independent of the strength of the magnetic field.
Abstract: A broad class of astronomical accretion disks is presently shown to be dynamically unstable to axisymmetric disturbances in the presence of a weak magnetic field, an insight with consequently broad applicability to gaseous, differentially-rotating systems. In the first part of this work, a linear analysis is presented of the instability, which is local and extremely powerful; the maximum growth rate, which is of the order of the angular rotation velocity, is independent of the strength of the magnetic field. Fluid motions associated with the instability directly generate both poloidal and toroidal field components. In the second part of this investigation, the scaling relation between the instability's wavenumber and the Alfven velocity is demonstrated, and the independence of the maximum growth rate from magnetic field strength is confirmed.

4,265 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the range of slopes arises mostly due of sys- tematic differences in the velocity dispersions used by different groups for the same galaxies, and that one significant component of the difference results from Ferrarese & Merritt's extrapolation of central velocity dispersion to re= 8( re is the effective radius) using an empirical formula.
Abstract: Observations of nearby galaxies reveal a strong correlation between the mass of the central dark object MBH and the velocity dispersionof the host galaxy, of the form logðMBH=M� Þ¼ � þ � logð�=� 0Þ; how- ever, published estimates of the slopespan a wide range (3.75-5.3). Merritt & Ferrarese have argued that low slopes (d4) arise because of neglect of random measurement errors in the dispersions and an incorrect choice for the dispersion of the Milky Way Galaxy. We show that these explanations and several others account for at most a small part of the slope range. Instead, the range of slopes arises mostly because of sys- tematic differences in the velocity dispersions used by different groups for the same galaxies. The origin of these differences remains unclear, but we suggest that one significant component of the difference results from Ferrarese & Merritt's extrapolation of central velocity dispersions to re= 8( re is the effective radius) using an empirical formula. Another component may arise from dispersion-dependent systematic errors in the mea- surements. A new determination of the slope using 31 galaxies yields � ¼ 4:02 � 0:32, � ¼ 8:13 � 0:06 for � 0 ¼ 200 km s � 1 . The MBH-� relation has an intrinsic dispersion in log MBH that is no larger than 0.25-0.3 dex and may be smaller if observational errors have been underestimated. In an appendix, we present a simple kinematic model for the velocity-dispersion profile of the Galactic bulge. Subject headings: black hole physics — galaxies: bulges — galaxies: fundamental parameters — galaxies: nuclei — Galaxy: bulge — Galaxy: kinematics and dynamics

2,742 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the properties and behavior of 20 X-ray binaries that contain a dynamically confirmed black hole, 17 of which are transient systems, during the past decade, many of these transien...
Abstract: We review the properties and behavior of 20 X-ray binaries that contain a dynamically-confirmed black hole, 17 of which are transient systems. During the past decade, many of these transien...

2,174 citations