scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations

01 Nov 1990-Journal of the American Chemical Society (American Chemical Society)-Vol. 112, Iss: 23, pp 8251-8260
About: This article is published in Journal of the American Chemical Society.The article was published on 1990-11-01. It has received 5862 citations till now. The article focuses on the topics: Chemical shift & Atomic orbital.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, an analysis of the performances of a parameter free density functional model (PBE0) obtained combining the so-called PBE generalized gradient functional with a predefined amount of exact exchange is presented.
Abstract: We present an analysis of the performances of a parameter free density functional model (PBE0) obtained combining the so called PBE generalized gradient functional with a predefined amount of exact exchange. The results obtained for structural, thermodynamic, kinetic and spectroscopic (magnetic, infrared and electronic) properties are satisfactory and not far from those delivered by the most reliable functionals including heavy parameterization. The way in which the functional is derived and the lack of empirical parameters fitted to specific properties make the PBE0 model a widely applicable method for both quantum chemistry and condensed matter physics.

13,411 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-modelling procedure called "Continuum Methods within MD and MC Simulations 3072", which automates the very labor-intensive and therefore time-heavy and expensive process of integrating discrete and continuous components into a discrete-time model.
Abstract: 6.2.2. Definition of Effective Properties 3064 6.3. Response Properties to Magnetic Fields 3066 6.3.1. Nuclear Shielding 3066 6.3.2. Indirect Spin−Spin Coupling 3067 6.3.3. EPR Parameters 3068 6.4. Properties of Chiral Systems 3069 6.4.1. Electronic Circular Dichroism (ECD) 3069 6.4.2. Optical Rotation (OR) 3069 6.4.3. VCD and VROA 3070 7. Continuum and Discrete Models 3071 7.1. Continuum Methods within MD and MC Simulations 3072

13,286 citations

Journal ArticleDOI
TL;DR: Specific developments discussed include fast methods for density functional theory calculations, linear scaling evaluation of energies, NMR chemical shifts and electric properties, fast auxiliary basis function methods for correlated energies and gradients, equation-of-motion coupled cluster methods for ground and excited states, geminal wavefunctions, embedding methods and techniques for exploring potential energy surfaces.
Abstract: Advances in theory and algorithms for electronic structure calculations must be incorporated into program packages to enable them to become routinely used by the broader chemical community. This work reviews advances made over the past five years or so that constitute the major improvements contained in a new release of the Q-Chem quantum chemistry package, together with illustrative timings and applications. Specific developments discussed include fast methods for density functional theory calculations, linear scaling evaluation of energies, NMR chemical shifts and electric properties, fast auxiliary basis function methods for correlated energies and gradients, equation-of-motion coupled cluster methods for ground and excited states, geminal wavefunctions, embedding methods and techniques for exploring potential energy surfaces.

2,527 citations

Journal ArticleDOI
TL;DR: In this article, the direct implementation of the GIAO and CSGT methods for calculating nuclear magnetic shielding tensors at both the Hartree-Fock and density functional levels of theory is presented.
Abstract: The direct (recomputation of two‐electron integrals) implementation of the gauge‐including atomic orbital (GIAO) and the CSGT (continuous set of gauge transformations) methods for calculating nuclear magnetic shielding tensors at both the Hartree‐Fock and density functional levels of theory are presented. Isotropic 13C, 15N, and 17O magnetic shielding constants for several molecules, including taxol (C47H51NO14 using 1032 basis functions) are reported. Shielding tensor components determined using the GIAO and CSGT methods are found to converge to the same value at sufficiently large basis sets; however, GIAO shielding tensor components for atoms other than carbon are found to converge faster with respect to basis set size than those determined using the CSGT method for both Hartree‐Fock and DFT. For molecules where electron correlation effects are significant, shielding constants determined using (gradient‐corrected) pure DFT or hybrid methods (including a mixture of Hartree‐Fock exchange and DFT exchange...

1,998 citations