scispace - formally typeset
Open AccessProceedings Article

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

Philipp Krähenbühl, +1 more
- Vol. 24, pp 109-117
Reads0
Chats0
TLDR
This paper considers fully connected CRF models defined on the complete set of pixels in an image and proposes a highly efficient approximate inference algorithm in which the pairwise edge potentials are defined by a linear combination of Gaussian kernels.
Abstract
Most state-of-the-art techniques for multi-class image segmentation and labeling use conditional random fields defined over pixels or image regions. While region-level models often feature dense pairwise connectivity, pixel-level models are considerably larger and have only permitted sparse graph structures. In this paper, we consider fully connected CRF models defined on the complete set of pixels in an image. The resulting graphs have billions of edges, making traditional inference algorithms impractical. Our main contribution is a highly efficient approximate inference algorithm for fully connected CRF models in which the pairwise edge potentials are defined by a linear combination of Gaussian kernels. Our experiments demonstrate that dense connectivity at the pixel level substantially improves segmentation and labeling accuracy.

read more

Citations
More filters
Journal ArticleDOI

SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

TL;DR: Quantitative assessments show that SegNet provides good performance with competitive inference time and most efficient inference memory-wise as compared to other architectures, including FCN and DeconvNet.
Journal ArticleDOI

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

TL;DR: This work addresses the task of semantic image segmentation with Deep Learning and proposes atrous spatial pyramid pooling (ASPP), which is proposed to robustly segment objects at multiple scales, and improves the localization of object boundaries by combining methods from DCNNs and probabilistic graphical models.
Posted Content

DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs

TL;DR: DeepLab as discussed by the authors proposes atrous spatial pyramid pooling (ASPP) to segment objects at multiple scales by probing an incoming convolutional feature layer with filters at multiple sampling rates and effective fields-of-views.
Proceedings ArticleDOI

Non-local Neural Networks

TL;DR: In this article, the non-local operation computes the response at a position as a weighted sum of the features at all positions, which can be used to capture long-range dependencies.
Book ChapterDOI

Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation

TL;DR: This work extends DeepLabv3 by adding a simple yet effective decoder module to refine the segmentation results especially along object boundaries and applies the depthwise separable convolution to both Atrous Spatial Pyramid Pooling and decoder modules, resulting in a faster and stronger encoder-decoder network.
References
More filters
Journal ArticleDOI

The Pascal Visual Object Classes (VOC) Challenge

TL;DR: The state-of-the-art in evaluated methods for both classification and detection are reviewed, whether the methods are statistically different, what they are learning from the images, and what the methods find easy or confuse.
Proceedings Article

Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data

TL;DR: This work presents iterative parameter estimation algorithms for conditional random fields and compares the performance of the resulting models to HMMs and MEMMs on synthetic and natural-language data.
Book

Probabilistic graphical models : principles and techniques

TL;DR: The framework of probabilistic graphical models, presented in this book, provides a general approach for causal reasoning and decision making under uncertainty, allowing interpretable models to be constructed and then manipulated by reasoning algorithms.
Journal ArticleDOI

What energy functions can be minimized via graph cuts

TL;DR: This work gives a precise characterization of what energy functions can be minimized using graph cuts, among the energy functions that can be written as a sum of terms containing three or fewer binary variables.