scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Efficient Nonfullerene Polymer Solar Cells Enabled by a Novel Wide Bandgap Small Molecular Acceptor.

01 May 2017-Advanced Materials (John Wiley & Sons, Ltd)-Vol. 29, Iss: 18, pp 1606054
TL;DR: A wide bandgap small molecular acceptor, SFBRCN, containing a 3D spirobifluorene core flaked with a 2,1,3-benzothiadiazole (BT) and end-capped with highly electron-deficient RCN units, has been successfully synthesized as a small molecularacceptor (SMA) for nonfullerene polymer solar cells (PSCs).
Abstract: A wide bandgap small molecular acceptor, SFBRCN, containing a 3D spirobifluorene core flaked with a 2,1,3-benzothiadiazole (BT) and end-capped with highly electron-deficient (3-ethylhexyl-4-oxothiazolidine-2-yl)dimalononitrile (RCN) units, has been successfully synthesized as a small molecular acceptor (SMA) for nonfullerene polymer solar cells (PSCs). This SMA exhibits a relatively wide optical bandgap of 2.03 eV, which provides a complementary absorption to commonly used low bandgap donor polymers, such as PTB7-Th. The strong electron-deficient BT and RCN units afford SFBRCN with a low-lying LUMO (lowest unoccupied molecular orbital) level, while the 3D structured spirobifluorene core can effectively suppress the self-aggregation tendency of the SMA, thus yielding a polymer:SMA blend with reasonably small domain size. As the results of such molecular design, SFBRCN enables nonfullerene PSCs with a high efficiency of 10.26%, which is the highest performance reported to date for a large bandgap nonfullerene SMA.
Citations
More filters
Journal ArticleDOI
TL;DR: Non-fullerene acceptors (NFAs) are currently a major focus of research in the development of bulk-heterojunction organic solar cells (OSCs) as mentioned in this paper.
Abstract: Non-fullerene acceptors (NFAs) are currently a major focus of research in the development of bulk-heterojunction organic solar cells (OSCs). In contrast to the widely used fullerene acceptors (FAs), the optical properties and electronic energy levels of NFAs can be readily tuned. NFA-based OSCs can also achieve greater thermal stability and photochemical stability, as well as longer device lifetimes, than their FA-based counterparts. Historically, the performance of NFA OSCs has lagged behind that of fullerene devices. However, recent developments have led to a rapid increase in power conversion efficiencies for NFA OSCs, with values now exceeding 13%, demonstrating the viability of using NFAs to replace FAs in next-generation high-performance OSCs. This Review discusses the important work that has led to this remarkable progress, focusing on the two most promising NFA classes to date: rylene diimide-based materials and materials based on fused aromatic cores with strong electron-accepting end groups. The key structure–property relationships, donor–acceptor matching criteria and aspects of device physics are discussed. Finally, we consider the remaining challenges and promising future directions for the NFA OSCs field. Non-fullerene acceptors have been widely used in organic solar cells over the past 3 years. This Review focuses on the two most promising classes of non-fullerene acceptors — rylene diimide-based materials and fused-ring electron acceptors — and discusses structure–property relationships, donor– acceptor matching criteria and device physics, as well as future research directions for the field.

1,975 citations

Journal ArticleDOI
TL;DR: Progress is summarized, aiming to describe the molecular design strategy, to provide insight into the structure-property relationship, and to highlight the challenges the field is facing, with emphasis placed on most recent nonfullerene acceptors that demonstrated top-of-the-line photovoltaic performances.
Abstract: The bulk-heterojunction blend of an electron donor and an electron acceptor material is the key component in a solution-processed organic photovoltaic device. In the past decades, a p-type conjugated polymer and an n-type fullerene derivative have been the most commonly used electron donor and electron acceptor, respectively. While most advances of the device performance come from the design of new polymer donors, fullerene derivatives have almost been exclusively used as electron acceptors in organic photovoltaics. Recently, nonfullerene acceptor materials, particularly small molecules and oligomers, have emerged as a promising alternative to replace fullerene derivatives. Compared to fullerenes, these new acceptors are generally synthesized from diversified, low-cost routes based on building block materials with extraordinary chemical, thermal, and photostability. The facile functionalization of these molecules affords excellent tunability to their optoelectronic and electrochemical properties. Within t...

1,269 citations

Journal ArticleDOI
TL;DR: Chlorination demonstrates effective ability in enhancing the device performance and facile synthesis route, which both deserve further exploitation in the modification of photovoltaic materials.
Abstract: To make organic solar cells (OSCs) more competitive in the diverse photovoltaic cell technologies, it is very important to demonstrate that OSCs can achieve very good efficiencies and that their cost can be reduced. Here, a pair of nonfullerene small-molecule acceptors, IT-2Cl and IT-4Cl, is designed and synthesized by introducing easy-synthesis chlorine substituents onto the indacenodithieno[3,2-b]thiophene units. The unique feature of the large dipole moment of the C-Cl bond enhances the intermolecular charge-transfer effect between the donor-acceptor structures, and thus expands the absorption and down shifts the molecular energy levels. Meanwhile, the introduction of C-Cl also causes more pronounced molecular stacking, which also helps to expand the absorption spectrum. Both of the designed OSCs devices based on two acceptors can deliver a power conversion efficiency (PCE) greater than 13% when blended with a polymer donor with a low-lying highest occupied molecular orbital level. In addition, since IT-2Cl and IT-4Cl have very good compatibility, a ternary OSC device integrating these two acceptors is also fabricated and obtains a PCE greater than 14%. Chlorination demonstrates effective ability in enhancing the device performance and facile synthesis route, which both deserve further exploitation in the modification of photovoltaic materials.

634 citations

Journal ArticleDOI
TL;DR: Two novel wide-bandgap copolymers, PBDT-TDZ and PBDTS- TDZ, are developed based on 1,3,4-thiadiazole (TDZ) and benzo[1,2-b:4,5-b']dithiophene (BDT) building blocks, which exhibit the stronger optical absorption, lower-lying HOMO level, and higher crystallinity.
Abstract: Two novel wide-bandgap copolymers, PBDT-TDZ and PBDTS-TDZ, are developed based on 1,3,4-thiadiazole (TDZ) and benzo[1,2-b:4,5-b']dithiophene (BDT) building blocks. These copolymers exhibit wide bandgaps over 2.07 eV and low-lying highest occupied molecular orbital (HOMO) levels below -5.35 eV, which match well with the typical low-bandgap acceptor of ITIC, resulting in a good complementary absorption from 300 to 900 nm and a low HOMO level offset (≤0.13 eV). Compared to PBDT-TDZ, PBDTS-TDZ with alkylthio side chains exhibits the stronger optical absorption, lower-lying HOMO level, and higher crystallinity. By using a single green solvent of o-xylene, PBDTS-TDZ:ITIC devices exhibit a large open-circuit voltage (Voc ) up to 1.10 eV and an extremely low energy loss (Eloss ) of 0.48 eV. At the same time, the desirable high short-circuit current density (Jsc ) of 17.78 mA cm-2 and fill factor of 65.4% are also obtained, giving rise to a high power conversion efficiency (PCE) of 12.80% without any additive and post-treatment. When adopting a homotandem device architecture, the PCE is further improved to 13.35% (certified as 13.19%) with a much larger Voc of 2.13 V, which is the best value for any type of homotandem organic solar cells reported so far.

419 citations

Journal ArticleDOI
Runnan Yu1, Huifeng Yao1, Yong Cui1, Ling Hong1, Chang He1, Jianhui Hou1 
TL;DR: This work suggests that utilizing the complementary advantages of fullerene and NFAs is a promising way to finely tune the detailed photovoltaic parameters and further improve the PCEs of PSCs.
Abstract: Recent advances in the material design and synthesis of nonfullerene acceptors (NFAs) have revealed a new landscape for polymer solar cells (PSCs) and have boosted the power conversion efficiencies (PCEs) to over 15%. Further improvements of the photovoltaic performance are a significant challenge in NFA-PSCs based on binary donor:acceptor blends. In this study, ternary PSCs are fabricated by incorporating a fullerene derivative, PC61 BM, into a combination of a polymer donor (PBDB-TF) and a fused-ring NFA (Y6) and a very high PCE of 16.5% (certified as 16.2%) is recorded. Detailed studies suggest that the loading of PC61 BM into the PBDB-TF:Y6 blend can not only enhance the electron mobility but also can increase the electroluminescence quantum efficiency, leading to balanced charge transport and reduced nonradiative energy losses simultaneously. This work suggests that utilizing the complementary advantages of fullerene and NFAs is a promising way to finely tune the detailed photovoltaic parameters and further improve the PCEs of PSCs.

352 citations

References
More filters
Journal ArticleDOI
TL;DR: A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized.
Abstract: A novel non-fullerene electron acceptor (ITIC) that overcomes some of the shortcomings of fullerene acceptors, for example, weak absorption in the visible spectral region and limited energy-level variability, is designed and synthesized. Fullerene-free polymer solar cells (PSCs) based on the ITIC acceptor are demonstrated to exhibit power conversion effi ciencies of up to 6.8%, a record for fullerene-free PSCs.

3,048 citations

Journal ArticleDOI
TL;DR: A nonfullerene-based polymer solar cell (PSC) that significantly outperforms fullerene -based PSCs with respect to the power-conversion efficiency and excellent thermal stability is demonstrated for the first time.
Abstract: A nonfullerene-based polymer solar cell (PSC) that significantly outperforms fullerene-based PSCs with respect to the power-conversion efficiency is demonstrated for the first time. An efficiency of >11%, which is among the top values in the PSC field, and excellent thermal stability is obtained using PBDB-T and ITIC as donor and acceptor, respectively.

1,662 citations

Journal ArticleDOI
TL;DR: The status of understanding of the operation of bulk heterojunction (BHJ) solar cells is reviewed and a summary of the problems to be solved to achieve the predicted power conversion efficiencies of >20% for a single cell is concluded.
Abstract: The status of understanding of the operation of bulk heterojunction (BHJ) solar cells is reviewed. Because the carrier photoexcitation recombination lengths are typically 10 nm in these disordered materials, the length scale for self-assembly must be of order 10–20 nm. Experiments have verified the existence of the BHJ nanostructure, but the morphology remains complex and a limiting factor. Three steps are required for generation of electrical power: i) absorption of photons from the sun; ii) photoinduced charge separation and the generation of mobile carriers; iii) collection of electrons and holes at opposite electrodes. The ultrafast charge transfer process arises from fundamental quantum uncertainty; mobile carriers are directly generated (electrons in the acceptor domains and holes in the donor domains) by the ultrafast charge transfer (≈70%) with ≈30% generated by exciton diffusion to a charge separating heterojunction. Sweep-out of the mobile carriers by the internal field prior to recombination is essential for high performance. Bimolecular recombination dominates in materials where the donor and acceptor phases are pure. Impurities degrade performance by introducing Shockly–Read–Hall decay. The review concludes with a summary of the problems to be solved to achieve the predicted power conversion efficiencies of >20% for a single cell.

1,492 citations

Journal ArticleDOI
TL;DR: The two new SMAs (IT-M and IT-DM) end-capped by methyl-modified dicycanovinylindan-1-one exhibit upshifted lowest unoccupied molecular orbital (LUMO) levels, and hence higher open-circuit voltages can be observed in the corresponding devices.
Abstract: Fine energy-level modulations of small-molecule acceptors (SMAs) are realized via subtle chemical modifications on strong electron-withdrawing end-groups. The two new SMAs (IT-M and IT-DM) end-capped by methyl-modified dicycanovinylindan-1-one exhibit upshifted lowest unoccupied molecular orbital (LUMO) levels, and hence higher open-circuit voltages can be observed in the corresponding devices. Finally, a top power conversion efficiency of 12.05% is achieved.

1,276 citations

Journal ArticleDOI
TL;DR: In this article, fast and efficient charge separation is essential to achieve high power conversion efficiency in organic solar cells (OSCs), and in state-of-the-art OSCs, this is usually achieved by a significant driv
Abstract: Fast and efficient charge separation is essential to achieve high power conversion efficiency in organic solar cells (OSCs). In state-of-the-art OSCs, this is usually achieved by a significant driv ...

1,088 citations