scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Efficient silicon solar cells with dopant-free asymmetric heterocontacts

TL;DR: In this paper, the dopant-free electron and hole carrier-selective heterocontacts using alkali metal fluorides and metal oxides, respectively, in combination with passivating intrinsic amorphous silicon interlayers, were successfully developed and implemented.
Abstract: A salient characteristic of solar cells is their ability to subject photo-generated electrons and holes to pathways of asymmetrical conductivity—‘assisting’ them towards their respective contacts. All commercially available crystalline silicon (c-Si) solar cells achieve this by making use of doping in either near-surface regions or overlying silicon-based films. Despite being commonplace, this approach is hindered by several optoelectronic losses and technological limitations specific to doped silicon. A progressive approach to circumvent these issues involves the replacement of doped-silicon contacts with alternative materials which can also form ‘carrier-selective’ interfaces on c-Si. Here we successfully develop and implement dopant-free electron and hole carrier-selective heterocontacts using alkali metal fluorides and metal oxides, respectively, in combination with passivating intrinsic amorphous silicon interlayers, resulting in power conversion efficiencies approaching 20%. Furthermore, the simplified architectures inherent to this approach allow cell fabrication in only seven low-temperature (≤200 ∘C), lithography-free steps. This is a marked improvement on conventional doped-silicon high-efficiency processes, and highlights potential improvements on both sides of the cost-to-performance ratio for c-Si photovoltaics. The use of doped-silicon contacts in silicon solar cells adds cost and complexity to the fabrication process. These issues can now be circumvented by using dopant-free carrier-selective interfaces on silicon, realized by alkali metal fluorides and metal oxides.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors review the dynamic field of crystalline silicon photovoltaics from a device-engineering perspective and give an up-to-date summary of promising recent pathways for further efficiency improvements and cost reduction employing novel carrierselective passivating contact schemes, as well as tandem multi-junction architectures, in particular those that combine silicon absorbers with organic-inorganic perovskite materials.
Abstract: With a global market share of about 90%, crystalline silicon is by far the most important photovoltaic technology today. This article reviews the dynamic field of crystalline silicon photovoltaics from a device-engineering perspective. First, it discusses key factors responsible for the success of the classic dopant-diffused silicon homojunction solar cell. Next it analyzes two archetypal high-efficiency device architectures – the interdigitated back-contact silicon cell and the silicon heterojunction cell – both of which have demonstrated power conversion efficiencies greater than 25%. Last, it gives an up-to-date summary of promising recent pathways for further efficiency improvements and cost reduction employing novel carrier-selective passivating contact schemes, as well as tandem multi-junction architectures, in particular those that combine silicon absorbers with organic–inorganic perovskite materials.

751 citations

Journal ArticleDOI
Donglei Zhou1, Dali Liu1, Gencai Pan1, Xu Chen1, Dongyu Li1, Wen Xu1, Xue Bai1, Hongwei Song1 
TL;DR: The doped perovskite nanocrystals are successfully explored as a downconverter of commercial silicon solar cells (SSCs) and the PCE of the SSCs is improved, with a relative enhancement of 18.8%.
Abstract: Quantum cutting can realize the emission of multiple near-infrared photons for each ultraviolet/visible photon absorbed, and has potential to significantly improve the photoelectric conversion efficiency (PCE) of solar cells. However, due to the lack of an ideal downconversion material, it has merely served as a principle in the laboratory until now. Here, the fabrication of a novel type of quantum cutting material, CsPbCl1.5 Br1.5 :Yb3+ , Ce3+ nanocrystals is presented. Benefiting from the larger absorption cross-section, weaker electron-phonon coupling, and higher inner luminescent quantum yield (146%), the doped perovskite nanocrystals are successfully explored as a downconverter of commercial silicon solar cells (SSCs). Noticeably, the PCE of the SSCs is improved from 18.1% to 21.5%, with a relative enhancement of 18.8%. This work exhibits a cheap, convenient, and effective way to enhance the PCE of SSCs, which may be commercially popularized in the future.

359 citations

Journal ArticleDOI
TL;DR: De Wolf et al. as mentioned in this paper reviewed the fundamental physical processes governing contact formation in crystalline silicon (c-Si) and identified the role passivating contacts play in increasing c-Si solar cell efficiencies beyond the limitations imposed by heavy doping and direct metallization.
Abstract: The global photovoltaic (PV) market is dominated by crystalline silicon (c-Si) based technologies with heavily doped, directly metallized contacts. Recombination of photo-generated electrons and holes at the contact regions is increasingly constraining the power conversion efficiencies of these devices as other performance-limiting energy losses are overcome. To move forward, c-Si PV technologies must implement alternative contacting approaches. Passivating contacts, which incorporate thin films within the contact structure that simultaneously supress recombination and promote charge-carrier selectivity, are a promising next step for the mainstream c-Si PV industry. In this work, we review the fundamental physical processes governing contact formation in c-Si. In doing so we identify the role passivating contacts play in increasing c-Si solar cell efficiencies beyond the limitations imposed by heavy doping and direct metallization. Strategies towards the implementation of passivating contacts in industrial environments are discussed. The development of passivating contacts holds great potential for enhancing the power conversion efficiency of silicon photovoltaics. Here, De Wolf et al. review recent advances in material design and device architecture, and discuss technical challenges to industrial fabrication.

326 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the design guidelines for passivating contacts and outline their prospects, and present an overview and classification of work to date on passivating contact structures in c-Si solar cells.
Abstract: To further increase the conversion efficiency of crystalline silicon (c-Si) solar cells, it is vital to reduce the recombination losses associated with the contacts. Therefore, a contact structure that simultaneously passivates the c-Si surface while selectively extracting only one type of charge carrier (i.e., either electrons or holes) is desired. Realizing such passivating contacts in c-Si solar cells has become an important research objective, and an overview and classification of work to date on this topic is presented here. Using this overview, we discuss the design guidelines for passivating contacts and outline their prospects.

263 citations


Cites background or methods or result from "Efficient silicon solar cells with ..."

  • ...2–76 mΩ·cm2 [15], [106], [133]–[137]), while just a single report of a low J0 value has appeared, it is likely that J0 is generally more of a limiting factor in the solar cell performance than ρcontact for these materials....

    [...]

  • ...that has recently been used to calculate iso-efficiency lines in a J0–ρcontact plot [113] and that our approach is comparable to other recent work [106], [107], [146], [147]....

    [...]

  • ...The other materials have a considerably lower WF than Al, which is the property to which the Ohmic behavior and associated electron-selective contact properties are ascribed [16], [106], [134]–[137]....

    [...]

  • ...of doped a-Si:H is avoided altogether [106]....

    [...]

  • ...9 mA/cm2 due to the higher transparency of MoOx compared with p-type a-Si:H [106]....

    [...]

References
More filters
Book
04 Jul 1990
TL;DR: In this article, the authors present a characterization of the resistivity of a two-point-versus-four-point probe in terms of the number of contacts and the amount of contacts in the probe.
Abstract: Preface to Third Edition. 1 Resistivity. 1.1 Introduction. 1.2 Two-Point Versus Four-Point Probe. 1.3 Wafer Mapping. 1.4 Resistivity Profiling. 1.5 Contactless Methods. 1.6 Conductivity Type. 1.7 Strengths and Weaknesses. Appendix 1.1 Resistivity as a Function of Doping Density. Appendix 1.2 Intrinsic Carrier Density. References. Problems. Review Questions. 2 Carrier and Doping Density. 2.1 Introduction. 2.2 Capacitance-Voltage (C-V). 2.3 Current-Voltage (I-V). 2.4 Measurement Errors and Precautions. 2.5 Hall Effect. 2.6 Optical Techniques. 2.7 Secondary Ion Mass Spectrometry (SIMS). 2.8 Rutherford Backscattering (RBS). 2.9 Lateral Profiling. 2.10 Strengths and Weaknesses. Appendix 2.1 Parallel or Series Connection? Appendix 2.2 Circuit Conversion. References. Problems. Review Questions. 3 Contact Resistance and Schottky Barriers. 3.1 Introduction. 3.2 Metal-Semiconductor Contacts. 3.3 Contact Resistance. 3.4 Measurement Techniques. 3.5 Schottky Barrier Height. 3.6 Comparison of Methods. 3.7 Strengths and Weaknesses. Appendix 3.1 Effect of Parasitic Resistance. Appendix 3.2 Alloys for Contacts to Semiconductors. References. Problems. Review Questions. 4 Series Resistance, Channel Length and Width, and Threshold Voltage. 4.1 Introduction. 4.2 PN Junction Diodes. 4.3 Schottky Barrier Diodes. 4.4 Solar Cells. 4.5 Bipolar Junction Transistors. 4.6 MOSFETS. 4.7 MESFETS and MODFETS. 4.8 Threshold Voltage. 4.9 Pseudo MOSFET. 4.10 Strengths and Weaknesses. Appendix 4.1 Schottky Diode Current-Voltage Equation. References. Problems. Review Questions. 5 Defects. 5.1 Introduction. 5.2 Generation-Recombination Statistics. 5.3 Capacitance Measurements. 5.4 Current Measurements. 5.5 Charge Measurements. 5.6 Deep-Level Transient Spectroscopy (DLTS). 5.7 Thermally Stimulated Capacitance and Current. 5.8 Positron Annihilation Spectroscopy (PAS). 5.9 Strengths and Weaknesses. Appendix 5.1 Activation Energy and Capture Cross-Section. Appendix 5.2 Time Constant Extraction. Appendix 5.3 Si and GaAs Data. References. Problems. Review Questions. 6 Oxide and Interface Trapped Charges, Oxide Thickness. 6.1 Introduction. 6.2 Fixed, Oxide Trapped, and Mobile Oxide Charge. 6.3 Interface Trapped Charge. 6.4 Oxide Thickness. 6.5 Strengths and Weaknesses. Appendix 6.1 Capacitance Measurement Techniques. Appendix 6.2 Effect of Chuck Capacitance and Leakage Current. References. Problems. Review Questions. 7 Carrier Lifetimes. 7.1 Introduction. 7.2 Recombination Lifetime/Surface Recombination Velocity. 7.3 Generation Lifetime/Surface Generation Velocity. 7.4 Recombination Lifetime-Optical Measurements. 7.5 Recombination Lifetime-Electrical Measurements. 7.6 Generation Lifetime-Electrical Measurements. 7.7 Strengths and Weaknesses. Appendix 7.1 Optical Excitation. Appendix 7.2 Electrical Excitation. References. Problems. Review Questions. 8 Mobility. 8.1 Introduction. 8.2 Conductivity Mobility. 8.3 Hall Effect and Mobility. 8.4 Magnetoresistance Mobility. 8.5 Time-of-Flight Drift Mobility. 8.6 MOSFET Mobility. 8.7 Contactless Mobility. 8.8 Strengths and Weaknesses. Appendix 8.1 Semiconductor Bulk Mobilities. Appendix 8.2 Semiconductor Surface Mobilities. Appendix 8.3 Effect of Channel Frequency Response. Appendix 8.4 Effect of Interface Trapped Charge. References. Problems. Review Questions. 9 Charge-based and Probe Characterization. 9.1 Introduction. 9.2 Background. 9.3 Surface Charging. 9.4 The Kelvin Probe. 9.5 Applications. 9.6 Scanning Probe Microscopy (SPM). 9.7 Strengths and Weaknesses. References. Problems. Review Questions. 10 Optical Characterization. 10.1 Introduction. 10.2 Optical Microscopy. 10.3 Ellipsometry. 10.4 Transmission. 10.5 Reflection. 10.6 Light Scattering. 10.7 Modulation Spectroscopy. 10.8 Line Width. 10.9 Photoluminescence (PL). 10.10 Raman Spectroscopy. 10.11 Strengths and Weaknesses. Appendix 10.1 Transmission Equations. Appendix 10.2 Absorption Coefficients and Refractive Indices for Selected Semiconductors. References. Problems. Review Questions. 11 Chemical and Physical Characterization. 11.1 Introduction. 11.2 Electron Beam Techniques. 11.3 Ion Beam Techniques. 11.4 X-Ray and Gamma-Ray Techniques. 11.5 Strengths and Weaknesses. Appendix 11.1 Selected Features of Some Analytical Techniques. References. Problems. Review Questions. 12 Reliability and Failure Analysis. 12.1 Introduction. 12.2 Failure Times and Acceleration Factors. 12.3 Distribution Functions. 12.4 Reliability Concerns. 12.5 Failure Analysis Characterization Techniques. 12.6 Strengths and Weaknesses. Appendix 12.1 Gate Currents. References. Problems. Review Questions. Appendix 1 List of Symbols. Appendix 2 Abbreviations and Acronyms. Index.

6,573 citations

Journal ArticleDOI
01 Aug 2014-Science
TL;DR: Perovskite films received a boost in photovoltaic efficiency through controlled formation of charge-generating films and improved current transfer to the electrodes and low-temperature processing steps allowed the use of materials that draw current out of the perovskites layer more efficiently.
Abstract: Advancing perovskite solar cell technologies toward their theoretical power conversion efficiency (PCE) requires delicate control over the carrier dynamics throughout the entire device. By controlling the formation of the perovskite layer and careful choices of other materials, we suppressed carrier recombination in the absorber, facilitated carrier injection into the carrier transport layers, and maintained good carrier extraction at the electrodes. When measured via reverse bias scan, cell PCE is typically boosted to 16.6% on average, with the highest efficiency of ~19.3% in a planar geometry without antireflective coating. The fabrication of our perovskite solar cells was conducted in air and from solution at low temperatures, which should simplify manufacturing of large-area perovskite devices that are inexpensive and perform at high levels.

5,789 citations

Journal ArticleDOI
TL;DR: In this article, an ultrathin LiF layer adjacent to an electron-transporting layer and an aluminum outerlayer was used as an electrode for organic electroluminescent devices.
Abstract: A bilayer is used as an electrode for organic electroluminescent devices The bilayer consists of an ultrathin LiF layer adjacent to an electron-transporting layer and an aluminum outerlayer Devices with the bilayer electrode showed enhanced electron injection and high electroluminescence efficiency as compared with a Mg09Ag01 cathode Similar effects were observed when replacing MgO for LiF The improvements are attributed to band bending of the organic layer in contact with the dielectrics

1,471 citations

Journal ArticleDOI
TL;DR: In this article, the structure of an interdigitated back contact was adopted with crystalline silicon heterojunction solar cells to reduce optical loss from a front grid electrode, a transparent conducting oxide (TCO) layer, and a-Si:H layers as an approach for exceeding the conversion efficiency of 25%.
Abstract: The crystalline silicon heterojunction structure adopted in photovoltaic modules commercialized as Panasonic's HIT has significantly reduced recombination loss, resulting in greater conversion efficiency. The structure of an interdigitated back contact was adopted with our crystalline silicon heterojunction solar cells to reduce optical loss from a front grid electrode, a transparent conducting oxide (TCO) layer, and a-Si:H layers as an approach for exceeding the conversion efficiency of 25%. As a result of the improved short-circuit current (J sc ), we achieved the world's highest efficiency of 25.6% for crystalline silicon-based solar cells under 1-sun illumination (designated area: 143.7 cm 2 ).

1,061 citations

Related Papers (5)
Trending Questions (1)
How do you make doped silicon?

This is a marked improvement on conventional doped-silicon high-efficiency processes, and highlights potential improvements on both sides of the cost-to-performance ratio for c-Si photovoltaics.