scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Efficient Tensor Completion for Color Image and Video Recovery: Low-Rank Tensor Train

TL;DR: Wang et al. as discussed by the authors proposed a novel tensor completion approach based on the tensor train (TT) rank, which is able to capture hidden information from tensors thanks to its definition from a well-balanced matricization scheme.
Abstract: This paper proposes a novel approach to tensor completion, which recovers missing entries of data represented by tensors. The approach is based on the tensor train (TT) rank, which is able to capture hidden information from tensors thanks to its definition from a well-balanced matricization scheme. Accordingly, new optimization formulations for tensor completion are proposed as well as two new algorithms for their solution. The first one called simple low-rank tensor completion via TT (SiLRTC-TT) is intimately related to minimizing a nuclear norm based on TT rank. The second one is from a multilinear matrix factorization model to approximate the TT rank of a tensor, and is called tensor completion by parallel matrix factorization via TT (TMac-TT). A tensor augmentation scheme of transforming a low-order tensor to higher orders is also proposed to enhance the effectiveness of SiLRTC-TT and TMac-TT. Simulation results for color image and video recovery show the clear advantage of our method over all other methods.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In the proposed CSTF method, an HR-HSI is considered as a 3D tensor and the fusion problem is redefined as the estimation of a core Tensor and dictionaries of the three modes, which demonstrates the superiority of this algorithm over the current state-of-the-art HSI-MSI fusion approaches.
Abstract: Fusing a low spatial resolution hyperspectral image (LR-HSI) with a high spatial resolution multispectral image (HR-MSI) to obtain a high spatial resolution hyperspectral image (HR-HSI) has attracted increasing interest in recent years. In this paper, we propose a coupled sparse tensor factorization (CSTF)-based approach for fusing such images. In the proposed CSTF method, we consider an HR-HSI as a 3D tensor and redefine the fusion problem as the estimation of a core tensor and dictionaries of the three modes. The high spatial-spectral correlations in the HR-HSI are modeled by incorporating a regularizer, which promotes sparse core tensors. The estimation of the dictionaries and the core tensor are formulated as a coupled tensor factorization of the LR-HSI and of the HR-MSI. Experiments on two remotely sensed HSIs demonstrate the superiority of the proposed CSTF algorithm over the current state-of-the-art HSI-MSI fusion approaches.

371 citations

Journal ArticleDOI
TL;DR: A novel low tensor-train (TT) rank (LTTR)-based HSI super-resolution method is proposed, where an LTTR prior is designed to learn the correlations among the spatial, spectral, and nonlocal modes of the nonlocal similar high-spatial-resolution HSI (HR-HSI) cubes.
Abstract: Hyperspectral images (HSIs) with high spectral resolution only have the low spatial resolution. On the contrary, multispectral images (MSIs) with much lower spectral resolution can be obtained with higher spatial resolution. Therefore, fusing the high-spatial-resolution MSI (HR-MSI) with low-spatial-resolution HSI of the same scene has become the very popular HSI super-resolution scheme. In this paper, a novel low tensor-train (TT) rank (LTTR)-based HSI super-resolution method is proposed, where an LTTR prior is designed to learn the correlations among the spatial, spectral, and nonlocal modes of the nonlocal similar high-spatial-resolution HSI (HR-HSI) cubes. First, we cluster the HR-MSI cubes as many groups based on their similarities, and the HR-HSI cubes are also clustered according to the learned cluster structure in the HR-MSI cubes. The HR-HSI cubes in each group are much similar to each other and can constitute a 4-D tensor, whose four modes are highly correlated. Therefore, we impose the LTTR constraint on these 4-D tensors, which can effectively learn the correlations among the spatial, spectral, and nonlocal modes because of the well-balanced matricization scheme of TT rank. We formulate the super-resolution problem as TT rank regularized optimization problem, which is solved via the scheme of alternating direction method of multipliers. Experiments on HSI data sets indicate the effectiveness of the LTTR-based method.

252 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provide an overview of low-rank tensor completion for estimating the missing components of visual data, e.g., color images and videos, and demonstrate the performance comparison when different methods are applied to color image and video processing.

108 citations

Journal ArticleDOI
TL;DR: Experimental results for hyperspectral, video and face datasets have shown that the recovery performance for the robust tensor completion problem by using transformed tensor SVD is better in peak signal‐to‐noise ratio than that by using Fourier transform and other robust Tensor completion methods.

107 citations

Journal ArticleDOI
TL;DR: A new low-rank tensor decomposition model, termed tensor ring (TR) decomposition, is introduced to the analysis of RS data sets and a TR completion method for the missing information reconstruction is proposed.
Abstract: Time-series remote sensing (RS) images are often corrupted by various types of missing information such as dead pixels, clouds, and cloud shadows that significantly influence the subsequent applications. In this paper, we introduce a new low-rank tensor decomposition model, termed tensor ring (TR) decomposition, to the analysis of RS data sets and propose a TR completion method for the missing information reconstruction. The proposed TR completion model has the ability to utilize the low-rank property of time-series RS images from different dimensions. To further explore the smoothness of the RS image spatial information, total-variation regularization is also incorporated into the TR completion model. The proposed model is efficiently solved using two algorithms, the augmented Lagrange multiplier (ALM) and the alternating least square (ALS) methods. The simulated and real-data experiments show superior performance compared to other state-of-the-art low-rank related algorithms.

82 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, a structural similarity index is proposed for image quality assessment based on the degradation of structural information, which can be applied to both subjective ratings and objective methods on a database of images compressed with JPEG and JPEG2000.
Abstract: Objective methods for assessing perceptual image quality traditionally attempted to quantify the visibility of errors (differences) between a distorted image and a reference image using a variety of known properties of the human visual system. Under the assumption that human visual perception is highly adapted for extracting structural information from a scene, we introduce an alternative complementary framework for quality assessment based on the degradation of structural information. As a specific example of this concept, we develop a structural similarity index and demonstrate its promise through a set of intuitive examples, as well as comparison to both subjective ratings and state-of-the-art objective methods on a database of images compressed with JPEG and JPEG2000. A MATLAB implementation of the proposed algorithm is available online at http://www.cns.nyu.edu//spl sim/lcv/ssim/.

40,609 citations

01 Dec 2010
TL;DR: This chapter discusses quantum information theory, public-key cryptography and the RSA cryptosystem, and the proof of Lieb's theorem.
Abstract: Part I. Fundamental Concepts: 1. Introduction and overview 2. Introduction to quantum mechanics 3. Introduction to computer science Part II. Quantum Computation: 4. Quantum circuits 5. The quantum Fourier transform and its application 6. Quantum search algorithms 7. Quantum computers: physical realization Part III. Quantum Information: 8. Quantum noise and quantum operations 9. Distance measures for quantum information 10. Quantum error-correction 11. Entropy and information 12. Quantum information theory Appendices References Index.

14,825 citations

Journal ArticleDOI
TL;DR: This survey provides an overview of higher-order tensor decompositions, their applications, and available software.
Abstract: This survey provides an overview of higher-order tensor decompositions, their applications, and available software. A tensor is a multidimensional or $N$-way array. Decompositions of higher-order tensors (i.e., $N$-way arrays with $N \geq 3$) have applications in psycho-metrics, chemometrics, signal processing, numerical linear algebra, computer vision, numerical analysis, data mining, neuroscience, graph analysis, and elsewhere. Two particular tensor decompositions can be considered to be higher-order extensions of the matrix singular value decomposition: CANDECOMP/PARAFAC (CP) decomposes a tensor as a sum of rank-one tensors, and the Tucker decomposition is a higher-order form of principal component analysis. There are many other tensor decompositions, including INDSCAL, PARAFAC2, CANDELINC, DEDICOM, and PARATUCK2 as well as nonnegative variants of all of the above. The N-way Toolbox, Tensor Toolbox, and Multilinear Engine are examples of software packages for working with tensors.

9,227 citations

Journal ArticleDOI
TL;DR: This paper develops a simple first-order and easy-to-implement algorithm that is extremely efficient at addressing problems in which the optimal solution has low rank, and develops a framework in which one can understand these algorithms in terms of well-known Lagrange multiplier algorithms.
Abstract: This paper introduces a novel algorithm to approximate the matrix with minimum nuclear norm among all matrices obeying a set of convex constraints. This problem may be understood as the convex relaxation of a rank minimization problem and arises in many important applications as in the task of recovering a large matrix from a small subset of its entries (the famous Netflix problem). Off-the-shelf algorithms such as interior point methods are not directly amenable to large problems of this kind with over a million unknown entries. This paper develops a simple first-order and easy-to-implement algorithm that is extremely efficient at addressing problems in which the optimal solution has low rank. The algorithm is iterative, produces a sequence of matrices $\{\boldsymbol{X}^k,\boldsymbol{Y}^k\}$, and at each step mainly performs a soft-thresholding operation on the singular values of the matrix $\boldsymbol{Y}^k$. There are two remarkable features making this attractive for low-rank matrix completion problems. The first is that the soft-thresholding operation is applied to a sparse matrix; the second is that the rank of the iterates $\{\boldsymbol{X}^k\}$ is empirically nondecreasing. Both these facts allow the algorithm to make use of very minimal storage space and keep the computational cost of each iteration low. On the theoretical side, we provide a convergence analysis showing that the sequence of iterates converges. On the practical side, we provide numerical examples in which $1,000\times1,000$ matrices are recovered in less than a minute on a modest desktop computer. We also demonstrate that our approach is amenable to very large scale problems by recovering matrices of rank about 10 with nearly a billion unknowns from just about 0.4% of their sampled entries. Our methods are connected with the recent literature on linearized Bregman iterations for $\ell_1$ minimization, and we develop a framework in which one can understand these algorithms in terms of well-known Lagrange multiplier algorithms.

5,276 citations

Journal ArticleDOI
TL;DR: It is proved that one can perfectly recover most low-rank matrices from what appears to be an incomplete set of entries, and that objects other than signals and images can be perfectly reconstructed from very limited information.
Abstract: We consider a problem of considerable practical interest: the recovery of a data matrix from a sampling of its entries. Suppose that we observe m entries selected uniformly at random from a matrix M. Can we complete the matrix and recover the entries that we have not seen? We show that one can perfectly recover most low-rank matrices from what appears to be an incomplete set of entries. We prove that if the number m of sampled entries obeys $$m\ge C\,n^{1.2}r\log n$$ for some positive numerical constant C, then with very high probability, most n×n matrices of rank r can be perfectly recovered by solving a simple convex optimization program. This program finds the matrix with minimum nuclear norm that fits the data. The condition above assumes that the rank is not too large. However, if one replaces the 1.2 exponent with 1.25, then the result holds for all values of the rank. Similar results hold for arbitrary rectangular matrices as well. Our results are connected with the recent literature on compressed sensing, and show that objects other than signals and images can be perfectly reconstructed from very limited information.

5,274 citations