scispace - formally typeset
Journal ArticleDOI

Efficient ternary bulk heterojunction solar cells based on small molecules only

Reads0
Chats0
TLDR
In this article, an all-small-molecule ternary BHJ solar cell incorporating [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) and indene-C60 bisadduct (ICBA) as mixed acceptors and the conjugated small molecule (2Z,2′E)-dioctyl 3,3′-(5,5′,5,4-b′]dithiophene-2,6-diyl)bis(3,4′
Abstract
Ternary bulk heterojunctions (BHJs) are platforms that can improve the power conversion efficiencies of organic solar cells. In this paper, we report an all-small-molecule ternary BHJ solar cell incorporating [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) and indene-C60 bisadduct (ICBA) as mixed acceptors and the conjugated small molecule (2Z,2′E)-dioctyl 3,3′-(5′′,5′′′′′-(4,8-bis(5-octylthiophen-2-yl)benzo[1,2-b:5,4-b′]dithiophene-2,6-diyl)bis(3,4′,4′′-trioctyl-[2,2′:5′,2′′-terthiophene]-5′′,5-diyl))bis(2-cyanoacrylate) (BDT6T) as a donor. When incorporating a 15% content of ICBA relative to PC71BM, the ternary BHJ solar cell reached a power conversion efficiency of 6.36% with a short-circuit current density (JSC) of 12.00 mA cm−2, an open-circuit voltage (VOC) of 0.93 V, and a fill factor of 0.57. The enhancement in efficiency, relative to that of the binary system, resulted mainly from the increased value of JSC, attributable to not only the better intermixing of the donor and acceptor that improved charge transfer but also the more suitable morphology for efficient dissociation of excitons and more effective charge extraction. Our results suggest that there is great potential for exceeding the efficiencies of binary solar cells by adding a third component, without sacrificing the simplicity of the fabrication process.

read more

Citations
More filters
Journal ArticleDOI

Organic Optoelectronic Materials: Mechanisms and Applications

TL;DR: The article reviews the current understanding of the physical mechanisms that determine the (opto)electronic properties of high-performance organic materials and highlights the capabilities of various experimental techniques for characterization, summarizes top-of-the-line device performance, and outlines recent trends in the further development of the field.
Journal ArticleDOI

Versatile ternary organic solar cells: a critical review

TL;DR: In this paper, the authors summarize the recent progress of ternary solar cells and try to concise out the scientific issues in preparing high performance TSSs, which is the best candidate due to the cell with a high power conversion efficiency, easy fabrication and low cost.
Journal ArticleDOI

Ternary solar cells with a mixed face-on and edge-on orientation enable an unprecedented efficiency of 12.1%

TL;DR: In this paper, a ternary blend with a face-on and edge-on co-existent texture was proposed, which is far better than that of the face on orientated host film.
References
More filters
Journal ArticleDOI

Polymer solar cells

TL;DR: In this article, a review summarizes recent progress in the development of polymer solar cells and provides a synopsis of major achievements in the field over the past few years, while potential future developments and the applications of this technology are also briefly discussed.
Journal ArticleDOI

π-Conjugated Polymers for Organic Electronics and Photovoltaic Cell Applications†

TL;DR: In this article, a review of π-conjugated polymeric semiconductors for organic thin-film (or field effect) transistors (OTFTs or OFETs) and bulk-heterojunction photovoltaic (or solar) cell (BHJ-OPV or OSC) applications are summarized and analyzed.
Journal ArticleDOI

Small molecule organic semiconductors on the move: promises for future solar energy technology.

TL;DR: On the eve of commercialization of organic solar cells, this review provides an overview over efficiencies attained with small molecules/oligomers in OSCs and reflects materials and device concepts developed over the last decade.
Journal ArticleDOI

Single-junction polymer solar cells with high efficiency and photovoltage

TL;DR: In this paper, a photoactive layer made from a newly developed semiconducting polymer with a deepened valence energy level is used to reduce the tail state density below the conduction band of the electron acceptor.
Journal ArticleDOI

Solution-processed small-molecule solar cells with 6.7% efficiency

TL;DR: Efficient solution-processed SM BHJ solar cells based on a new molecular donor, DTS(PTTh(2))(2) are reported and it is demonstrated that solar cells fabricated from small donor molecules can compete with their polymeric counterparts.
Related Papers (5)